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Crop switching can enhance environmental 
sustainability and farmer incomes in China

Wei Xie1,8 ✉, Anfeng Zhu1,8, Tariq Ali2,8, Zhengtao Zhang3, Xiaoguang Chen4 ✉, Feng Wu5 ✉, 
Jikun Huang1 & Kyle Frankel Davis6,7 ✉

Achieving food-system sustainability is a multidimensional challenge. In China, a 
doubling of crop production since 1990 has compromised other dimensions of 
sustainability1,2. Although the country is promoting various interventions to enhance 
production efficiency and reduce environmental impacts3, there is little understanding 
of whether crop switching can achieve more sustainable cropping systems and 
whether coordinated action is needed to avoid tradeoffs. Here we combine high- 
resolution data on crop-specific yields, harvested areas, environmental footprints 
and farmer incomes to first quantify the current state of crop-production sustainability. 
Under varying levels of inter-ministerial and central coordination, we perform spatial 
optimizations that redistribute crops to meet a suite of agricultural sustainable 
development targets. With a siloed approach—in which each government ministry 
seeks to improve a single sustainability outcome in isolation—crop switching could 
realize large individual benefits but produce tradeoffs for other dimensions and 
between regions. In cases of central coordination—in which tradeoffs are prevented— 
we find marked co-benefits for environmental-impact reductions (blue water (−4.5% to 
−18.5%), green water (−4.4% to −9.5%), greenhouse gases (GHGs) (−1.7% to −7.7%), 
fertilizers (−5.2% to −10.9%), pesticides (−4.3% to −10.8%)) and increased farmer 
incomes (+2.9% to +7.5%). These outcomes of centrally coordinated crop switching 
can contribute substantially (23–40% across dimensions) towards China’s 2030 
agricultural sustainable development targets and potentially produce global  
resource savings. This integrated approach can inform feasible targeted agricultural 
interventions that achieve sustainability co-benefits across several dimensions.

The Green Revolution brought about unprecedented increases in 
global food supply to meet rapidly rising demand. Yet the promotion 
of relatively few high-yielding crops and accompanying input-intensive 
practices has led to serious compromises for nutrition security and the 
environment4. The development of agriculture in China has followed 
these same patterns. The country has made marked gains in its agricul-
tural productivity over the past several decades, increasing national 
crop production by +107% since 1990 alone1. Despite a population of 
more than 1.4 billion people, the increase in China’s food demand has 
largely been met by domestic increases in agricultural production, 
except for soybean1. Yet attaining these high levels of food production 
has meant mounting environmental challenges across the country. In 
recent decades, groundwater levels have dropped at alarming rates2, 
agricultural GHG emissions have increased1, the intensity of fertilizer 
application has increased substantially1 and pesticide pollution has 
become more widespread1.

In recognition of these clear tradeoffs, the Chinese government is 
considering a suite of interventions to improve the sustainability of 

agriculture without compromising the sector’s high levels of produc-
tion3. These strategies include developing ‘high-standard farmland’ to 
improve agriculture productivity while reducing input use (for exam-
ple, water, fertilizer), implementing ‘water-saving projects’ to improve 
water-use efficiency and extending technologies for soil testing and 
nutrient recommendations to reduce fertilizer use, among others. 
Although all of these solutions promise to reduce the environmen-
tal burden of agriculture, they tend to focus on singular outcomes 
and are based on the assumption that crops are already grown in the 
locations in which they are most agro-climatically suited and most 
resource-efficient. Yet recent research has made it increasingly clear 
that current cropping patterns are suboptimal across several outcomes 
and that crop switching (that is, changes in crop distribution and/or 
crop rotations) may offer promise for improving agricultural sustain-
ability. Recent global studies5–8 have shown that crop redistribution 
can reduce irrigation (that is, blue) water demand (−12% to −21%) and 
blue-water scarcity and protect the natural environment and biodiver-
sity while improving or maintaining food production. Several other 
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analyses have recently been performed at the country level, which is 
necessary to account for policy-relevant factors that can influence the 
extent to which an agricultural solution is feasible. In India, crop redis-
tribution has been shown to improve dietary nutrient supply, climate 
resilience and net farmer incomes and reduce natural-resource use and 
GHG emissions9–11. In the United States, studies found that crop switch-
ing can reduce blue-water demand12 and climate-related crop losses13. 
Other research has shown the promise of diversifying crop rotations14,15. 
In China, field-based experiments in the North China Plain have shown 
that crop rotations alternative to conventional maize–wheat systems 
can reduce groundwater depletion and increase economic output14. 
Long-term evidence from North America has also shown the superior 
climate resilience of more diversified rotations15. Yet whether and to 
what extent crop switching would yield similar benefits for agricultural 
sustainability for the entire country of China remains unquantified.

Crop switching is a promising strategy to complement other sustain-
able farm-management solutions. The Chinese government has also 
recognized redistributing crops as a way to enhance the sustainable 
development of the agriculture sector3,16. For example, in early 2000, a 
crop-switching research project led by the National Development and 
Reform Commission (NDRC) put forward regional agriculture develop-
ment directions based on historical analysis16. More recently, China’s 
National Sustainable Agriculture Development Plan (2015–2030) also 
gave general directions by dividing China into three regions: with more 
emphasis on food production than sustainability (for example, in the 
Yangtze River region), with equal emphasis on food production and 
sustainability (for example, in the Northwest) and more emphasis 
on sustainability than food production (for example, in the Tibetan 
Plateau)3. To meet these policy priorities, it is therefore essential to 
quantitatively evaluate where and to what extent crop switching—in 
an economically feasible way—may contribute to China’s sustainable 
development targets without compromising food supply. Furthermore, 
because China alone accounts for large fractions of the global popula-
tion (19%)1, primary crop production (19%)1, natural-resource use (for 
example, fertilizers (25%), pesticides (10%), irrigation (13%), cropland 
(9%))1,17, agrifood-system-related GHGs (12%)1 and farmers (16%)1, efforts 
undertaken in China to improve its sustainable development goals will 
have far-reaching implications towards addressing global food security 
and sustainability challenges.

Here we quantify and assess opportunities for crop switching 
across China, focusing on 13 crops that collectively account for 94% 
of China’s primary crop production and 90% of its harvested area18. We 
combine gridded (5 arcmin) crop-specific data (circa the year 2010) 
on rainfed and irrigated yields and harvested areas19 with each crop’s 
water-requirement estimates, GHGs intensity20, fertilizer application 
rate21, pesticide use21 and farmer net profit21. Using these data, we esti-
mate several sustainability dimensions prioritized in China’s sustainable 
agriculture plans22, namely, production quantity, water demand, GHG 
emissions, fertilizer use, pesticide use and economic output of current 
crop production. We then construct a linear optimization model to 
simulate the contribution of crop switching to sustainable agricultural 
development and assess tradeoffs and co-benefits across several dimen-
sions and different regions. Each optimization run assigns priority to 
one of the following objectives: minimize water demand; minimize 
GHGs; minimize fertilizer use; minimize pesticides; maximize farmer 
incomes; or maximize benefits across all dimensions simultaneously—
based on three different levels of governmental cooperation (that is, 
siloed, cross-ministry coordination and central government coordina-
tion) (Table 1). Our optimizations reallocate harvested areas between 
crops and alter cropping rotations with the constraints that: (1) national 
supply of all crops cannot decrease—a constraint reflecting national 
self-sufficiency targets; (2) farmer incomes within each grid cell cannot 
decrease—ensuring that farmer profitability is not adversely affected; 
(3) only crops grown at present within a grid cell can be planted there; 
(4) the harvested area within each grid cell is held constant—preventing 

agricultural expansion; and (5) cropping calendars of rotating crops 
cannot overlap in time. We also test the uncertainties of relaxing these 
constraints. Finally, we quantify the outcomes of optimized crop switch-
ing and compare the magnitude of benefits to relevant sustainable 
development targets for China. Such evaluations of several outcomes 
are essential for identifying interventions capable of improving the 
multidimensional sustainability of agriculture.

Sustainability outcomes of potential crop switching
Different sustainability outcomes are administrated by separate gov-
ernment departments in China (for example, the Ministry of Water 
Resources—irrigation; the Ministry of Ecology and Environment—GHG 
emissions; the Ministry of Agriculture and Rural Affairs—fertilizers, 
pesticides and farmer incomes). Consequently, the narrower focus of 
each department on specific outcomes may work at counter-purposes 
towards achieving other sustainability goals. With this siloing of minis-
tries in mind, we first explored the extent to which a single dimension of 
agricultural sustainability could be improved through crop switching 
(hereinafter referred to as G1 simulations of no coordination; Table 1). We 
find that there is considerable potential for crop switching to enhance 
sustainable development. When assigning priority to a single sustain-
ability objective, crop switching can reduce the demand for blue water 
by as much as −27.8%, green water by −12.6%, GHGs by −17.1%, nitrogen 
fertilizers by −15.9%, phosphorous fertilizers by −15.5%, potash fertilizers 
by −20.6% and pesticides by −15.6% relative to current levels—without 
expanding cropland, reducing the production of any crop or reducing 
farmer incomes (Fig. 1 and Table S14). However, because a ministry 
assigns priority to only the sustainability objectives under its mandate, 
it may not necessarily consider the outcomes of other sustainability 
objectives for which other ministries are responsible. Accordingly, when 
our model optimizes an individual dimension of sustainability, we allow 
other dimensions to potentially degrade. Indeed, we find that, under this 
scenario (G1), several tradeoffs emerge between different dimensions of 
agricultural sustainability and between different regions (Fig. 1). We also 
observe a clear tradeoff with environmental outcomes when attempting 
to maximize farmer incomes. Under this scenario, crop switching can 
increase farmer incomes by as much as 90.5%, though at the cost of other 
environmental outcomes (Figs. S5 and S6). This suggests that efforts to 
increase farmer profitability under current crop-price structures would 
probably produce clear environmental tradeoffs.

To address this shortcoming, we examined a set of optimization 
scenarios in which cross-ministry coordination was enhanced to avoid 
sustainability tradeoffs. To reflect this, we imposed the constraints that 
optimizing one sustainability dimension would not degrade outcomes 
for the other sustainability dimensions (hereinafter referred to as G2 

Table 1 | Scenario summaries

Scenarios Sustainability 
dimension of 
objective function

Other 
sustainability 
dimensions

Farmer 
incomes

Crop 
production

G1 Optimized 
individually

May degrade on 
both national 
and grid levels May not 

decrease 
at grid 
level

May not 
decrease 
on national 
level

G2 Optimized 
individually

May not degrade 
on national/grid 
levels

G3 All sustainable dimensions are 
optimized

G1 (no coordination): siloed approach assigning priority to a single sustainability objective at a 
time; G2 (cross-ministry coordination): assigning priority to one sustainability dimension while 
not degrading outcomes for the other sustainability dimensions at the national/grid levels; G3 
(central coordination): assigning priority to the improvement margins in all dimensions being 
as high as possible while their between-dimension differences are as low as possible.



Nature  |  www.nature.com  |  3

simulations of cross-ministry coordination; Table 1). Under these condi-
tions, we found that crop switching can still achieve sizeable benefits 
across all dimensions—changes by as much as −18.5% (blue water), −9.5% 
(green water), −7.9% (GHGs), −12.0% (N fertilizer), −11.4% (P fertilizer), 
−13.0% (K fertilizer), −10.8% (pesticides) and +20.2% (farmer incomes). 
Yet, although tradeoffs are avoided between sustainability dimensions 
and different regions under G2, the optimization of any one objective 
with cross-ministry coordination would still lead to minimal benefits 
for other outcomes (Fig. 1 and Table S14).

To this end, we performed a multiobjective optimization to examine 
to what extent co-benefits can emerge for all sustainability dimensions 
simultaneously under a scenario in which China’s central government 
leads the coordination (hereinafter referred to as G3 simulation of 
central coordination; Table 1). Under these conditions, we optimized 
for all sustainability dimensions such that the improvement margins in 
all dimensions are as high as possible while their between-dimension 
differences are as low as possible. In doing so, we take an agnostic posi-
tion on the relative importance of each outcome. We also adapt our 
approach to place different weights on the outcomes to demonstrate 
different levels of government’s political will (see Extended Data Fig. 1). 
Under this set of results, we found that crop switching can still achieve 
considerable benefits: −6.5% (−4.5% to −18.5%) for blue water; −7.5% 
(−4.4% to −9.5%) for green water; −6.5% (−1.7% to −7.7%) for GHGs; −8.1% 
(−5.2% to −12.0%) for N fertilizer; −9.8% (−5.1% to −11.4%) for P fertilizer; 
−8.3% (−4.5% to −13.0%) for K fertilizer; −6.7% (−4.3% to −10.8%) for pes-
ticides; +4.5% (+2.9% to +7.5%) for farmer incomes (Fig. 1 and Table S14).

Comparing across all three levels of coordination highlights cases in 
which certain sustainability outcomes are similar in magnitude, whereas 
others can differ substantially at the national level (Table S14). As an 
example of the former, minimizing P fertilizer use under G1 leads to 
a modest (6% relative to G3) enhancement in P fertilizer savings while 
other outcomes are comparable in magnitude (−4% to +5% relative to 

G3). Conversely, minimizing blue water under G1 leads to 23% greater 
blue-water savings relative to G3 but produces several losses for other 
outcomes (−10% to −5% relative to G3). Furthermore, the G1 scenario 
allows for degradation of certain sustainability criteria in some locations, 
which does not occur in G2 and G3. These contrasting examples point to 
an interesting tension between the amount of extra effort accompanying 
greater levels of coordination, the relative difference in benefits associ-
ated with greater coordination and the willingness to accept tradeoffs 
along some sustainability outcomes and among some regions. Neverthe-
less, our findings show that crop switching can be used as an effective 
strategy to address current conditions of resource depletion or unsus-
tainable use (for example, blue-water scarcity) (Fig. 2) and the location of 
crop switching can be targeted on the basis of a variety of definitions and 
measures of sustainability (see Fig. S7 for other sustainability dimensions 
and Table S12 for boundaries of sustainable resource use).

Across the optimization scenarios examined here, we also find certain 
consistent regional changes in the distributions of specific crops. For 
instance, regardless of the optimization objective, we observe sub-
stantial recommended shifts, for example, wheat decrease in both the 
North China Plain and the Northwest Region and increase in the Yangtze 
River Plain; rice decrease in the Yangtze River Plain; maize increase in 
the Northwest Region; rapeseed decrease in the Yangtze River Plain 
and cotton decrease in the Northwest Region (see Figs. 3 and S9–S11). 
These findings point to regions in which shifts in certain crops can 
lead to robust outcomes for several sustainability dimensions without 
compromising national food production or requiring more cropland. 
Taken together, all of these regional and national results—accompanied 
by modest changes in crop rotations (Fig. S8)—demonstrate real oppor-
tunities for crop switching to improve environmental sustainability 
and farmer incomes (Fig. S4). We have also shown the feasibility of the 
proposed crop switching by comparing it with recent rates of change 
in crop distributions across China (see Extended Data Figs. 3–6 and 
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Fig. 1 | National and regional changes in resource use, environmental losses 
and farmer incomes through crop switching under varying levels of 
government coordination. Each row represents a different optimization 
objective and each column represents the outcome for each sustainability 
dimension. G1 (simulation of no coordination) shows the changes in resource 
use, environmental losses and farmer incomes under the siloed approach, 
assigning priority to a single sustainability objective at a time. G2 (simulation 
of cross-ministry coordination) corresponds to the scenarios in which 
assigning priority to one sustainability dimension would not degrade the 
outcomes for the other sustainability dimensions. G3 (simulation of central 

coordination) represents the optimization that ensures that the improvement 
margins in all dimensions are as high as possible while their between-dimension 
differences are as low as possible. See Extended Data Figs. 1 and 2 for uncertainty 
analysis. BW, blue water; GW, green water; GHGs, greenhouse gas emissions;  
N, nitrogen fertilizers; P, phosphorus fertilizers; K, potash fertilizers; PEST., 
pesticides; INC., farmer incomes. The top row shows the seven regions of  
China: NE, Northeast Plain; NC, North China Plain; YZ, the Yangtze River Plain; 
SC, Southern China; NW, Northwest Region; SW, Southwest Region; TR, Tibet 
Region (see Fig. S3 and Table S2 for regional divisions). SDGs, sustainable 
development goals.
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Figs. S12–S14). Although this demonstrates that such changes may be 
feasible in the near future, unprecedented events such as the COVID-19 
pandemic could slow the pace of domestic-policy change and imple-
mentation. On the other hand, the increasingly consolidated ability of 
the central government—combined with China’s emphasis on domestic 
food supply and demonstrated ability to alter cropping patterns in the 
face of recent past events (for example, SARS and the global financial 
crisis)—could also mean that change can occur more quickly than has 
historically occurred if there is political will to do so.

Meeting China’s agricultural sustainable development 
targets
Different agencies in China set specific reduction targets for selected 
sustainability dimensions as a measure of progress towards achieving 
certain sustainable development goals. Realizing any one of the goals 
requires a combination of investments, technological and infrastruc-
tural improvements, policy reforms and, ultimately, a suite of interven-
tions that will probably be necessary to fully meet sustainability targets. 
To explain the relative impact magnitudes of crop switching, we com-
pare its potential benefits (that could be realized in the coming decades 
depending on the government’s political will to do so) with China’s 2030 
sustainable development goals in a counterfactual way (Figs. 4 and S15). 
According to the agricultural water-demand projections23 and the sus-
tainable development goal3, China needs to save 30 km3 of blue water by 
2030, and our crop switching can save 7.8 (5.4–22.1) km3—equivalent to 
26% (18–74%) for this goal under the G3 simulation of central coordina-
tion. For GHGs, China’s government aims to peak emissions around 2030 
and realize a net-zero emissions target before 2060. Although there is 
no specific target for agricultural GHG abatement, we assume no further 
increase after 2020 as a strict mitigation goal. Accordingly, we estimate 
that crop switching can contribute 24% (6–29%) towards achieving this 
goal. For fertilizers and pesticides, China has adopted a zero-increase 
plan24,25. Compared with these targets, savings from crop switching 
would also be substantial—equivalent to 40% (24–51%) for fertilizers and 
23% (15–37%) for pesticides by 2030. Increasing farmer incomes is also 

an important goal for the government. The Chinese Academy of Social 
Sciences projects that farmers’ personal disposable income in 2030 
will double from its 2020 level of US$2,600 per year (ref. 26). Most of 
the increase in farmer incomes will be from non-agricultural industries 
and high-value-added agricultural activities rather than traditional crop 
production. Our estimates still show that crop switching not only aids 
in realizing environmental sustainability goals in China but can also 
increase farmers’ personal income by US$6.3 to US$126.

Potential contribution to global resource savings
Agricultural trade has clear implications for food security, livelihoods 
and the environment in both exporting and importing countries27. The 
already large agricultural trade flows into and out of China, combined 
with its projected future food demand, mean that the country will play 
an important (and growing) role in determining global agricultural 
sustainability outcomes28. A prime example of this is China’s soybean 
imports, which have not only markedly altered the country’s cropping 
systems and damaged its environment29 but also placed reliance on 
remote natural-resource use30,31. By redistributing soybean produc-
tion to regions with high yields and lower resource-use intensities 
in China, crop switching can help the country use natural resources 
more efficiently and, at the same time, produce more soybeans. The 
increased production of soybean and other main crops in China has 
the potential to cascade through the global trade network (through 
China’s reduced import demand) and may lead to global resource sav-
ings (Table S15; see Supplementary Information Section 1.2.4 for the 
estimation method) and other indirect environmental and ecological 
benefits (see, for example, Folberth et al.8)—depending on how the 
trade partners would respond to China’s decreased international crop 
demand (for example, decreased production, sale of crops elsewhere 
etc.). If China’s trade partners did in fact reduce production and exports 
in response to China’s crop switching, we estimate that this could lead 
to substantial resource savings for China’s trade partners of blue water 
(0.3 to 102.9 km3), GHGs (0.5 to 24.6 million tonnes CO2 eq) and fertiliz-
ers (0.1 to 14.0 million tonnes) (Table S15).
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Fig. 2 | Changes in blue-water scarcity through optimized crop switching. 
Changes in the spatial distribution of water scarcity under the optimization 
scenario (G3) that simultaneously saves resources, reduces environmental 
losses and increases farmer incomes. a, Ratio of current blue-water use to 
water availability (that is, water scarcity)35. b, Changes in blue-water scarcity 

after crop switching. The base map was applied without endorsement using 
data from the National Geomatics Center of China (NGCC; http://www.ngcc.
cn/ngcc/) and the Institute of Agricultural Resources and Regional Planning, 
Chinese Academy of Agricultural Sciences (IARRP; https://iarrp.caas.cn/).

http://www.ngcc.cn/ngcc/
http://www.ngcc.cn/ngcc/
https://iarrp.caas.cn/
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A scientific basis for sustainable agricultural 
interventions
This study shows that crop switching is an important measure that can 
help achieve several sustainable development targets in China while 
improving farmer incomes and maintaining national production on exist-
ing croplands. We also show that siloed efforts by individual ministries 
(based on their narrow individual definitions of sustainability) may lead 
to substantial tradeoffs for other sustainability outcomes and work at 
counter-purposes to the goals of other ministries. As such, coordination 
is essential for avoiding tradeoffs and, more desirably, realizing several 
co-benefits, and for a country such as China with a large central planner 
government, such large-scale coordination is indeed feasible. Further, 
because sustainability outcomes are dependent on location, our study 
can enable the provision of spatially detailed solutions for different areas 
of China based on local conditions and sustainability priorities (Fig. 3). For 
instance, the consistent shifts that we observe away from some maize and 
towards soybean, sugar beet and rice in the Northeast Plain (NE) would 
benefit farmer incomes (as well as reducing the overuse of fertilizers and 
pesticides and preventing black-soil degradation) (Table S14) and point 
to initial opportunities for policymakers to implement crop switching. 
Similarly, in the Yangtze River Plain, sustainability co-benefits can be 
realized by reducing rapeseed and rice and increasing cultivation of 
wheat and maize, especially for GHG emissions. In the North China Plain, 
increases in soybean, rapeseed and rice in lieu of some wheat, maize, 
cotton and groundnut (Figs. S10 and S11) can also contribute to more 
sustainable cropping patterns and contribute substantially to alleviating 
regional water scarcity and excessive fertilizer use (Figs. 2 and S7). Such 
spatially explicit quantifications (such as those produced here) can thus 
play an important role in evaluating where agricultural interventions—
and which specific cropping switches—can offer the greatest benefits.

This study provides detailed, actionable scientific evidence as the 
Chinese government increases efforts to implement crop switching as 
a means of achieving more sustainable agriculture. Critical to realizing 
these changes will be the challenge of encouraging farmers to adopt 
new cropping choices. However, such changes are potentially realistic 
and achievable (Figs. S12–S14), especially considering that China has 
previously had success in incentivizing farmers at the provincial level32 
and even county level33 to choose crops intended to achieve national 
food-security targets. The spatially detailed results of our analysis 
also directly meet the information needs described in recent govern-
ment plans, which seek to address agricultural sustainability issues 
related to cultivated land, water resources, ecological protection and 
national food production and food security3. Further, our findings 
demonstrating the benefits of increased inter-ministry cooperation 
are in line with recent plans by the Chinese government to strengthen 
coordination and enhance close cooperation among different agen-
cies through the ‘Plan for Green Agricultural Development’34. Taken 
together, our quantitative multidimensional assessment provides 
an objective, science-based foundation for ensuring the feasibility of 
potential solutions for more sustainable agricultural systems.
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Methods

The crop-switching method for improving different (or several) sus-
tainability outcomes across China involved the use of diverse data-
sets and cross-disciplinary techniques. The overall framework of our 
methods is summarized in Fig. S2. Our approach followed four main 
tasks. First, we defined the crops to be included in the study. Second, 
we calculated green and blue water demand using a process-based 
crop water model (in four steps). Third, we quantified the current 
state of sustainability outcomes in China. Fourth, we developed and 
implemented single-objective and multiobjective crop-switching opti-
mization models.

Crop definitions
We focus on 13 main crops, wheat (spring wheat; winter wheat), rice 
(early rice; middle-season rice; late rice), maize (spring maize; summer 
maize), soybean, rapeseed, groundnut, cotton, sugar beet and sugar-
cane, which account for 94% of China’s primary crop production and 
90% of its harvested area18. For the crops we did not consider owing to 
data limitations, such as vegetables and fruits, we assumed that their 
harvest area and production remain constant and unaffected under our 
crop switching. Spatial data (5 arcmin; 1/12°; about 10 km resolution; 
dividing China into 72,000 grids) on crop-specific irrigated/rainfed 
yields (kg ha−1) and harvested areas (ha) were taken from the latest 
Spatial Production Allocation Model (SPAM) database (version 1.1, year 
2010) of the International Food Policy Research Institute19. Note that 
the areas with higher yields in 2010 are still more productive than other 
places in the past few years (Fig. S1), so our results are not sensitive to 
using the year 2010 SPAM maps.

For each grid, the current (year 2010) production of irrigated 
(ProductionCur,irr,z) and rainfed (ProductionCur,ra,z) crops were calcu-
lated as:

∑Production = HA × YLD (1)z i i z i zCur,irr/ra, irr/ra, , irr/ra, ,

in which HA is harvested area (ha), YLD is yield (kg ha−1), the subscripts 
irr and ra represent irrigated and rainfed cropping systems, respec-
tively, i represents the grids (i = 1, 2, …, 72,000) and z is crops. The 
national combined irrigated and rainfed production of each crop agrees 
well with that reported in FAOSTAT1 (Tables S1 and S9–S11).

Calculation of green and blue water using a process-based crop 
water model
In our approach, consumptive blue and green water requirements 
and demand are estimated directly by us using a process-based crop 
water model based on the Penman–Monteith equation. Green water 
refers to the effective precipitation consumed during the growing 
period of a crop. Blue water refers to the amount of water that needs 
to be supplemented by irrigation when natural, effective precipita-
tion during the crop-growing season is insufficient to maintain the 
normal growth of the crop. We first calculated the water require-
ments of different crops (ETz) based on the Penman–Monteith equa-
tion and the crop coefficient method recommended by the FAO37.  
This method is widely used for calculating crop water require-
ments (equations (2)–(4)). We then calculated crop-specific and 
grid-level green water and blue water demand (equations (5)–(8)). 
We used a long-term climatic dataset (1987–2016) from more than 
800 weather stations in China and calibrated the crop coefficients (Kz) 
for the selected crops in different regions of China (equation (3)). All 
climate-related parameters were based on daily observed data from 
weather stations (see data sources in Table S16). To avoid the unrepre-
sentative impact of extreme weather in a single year on the crop water 
requirements, we used 30-year (1987–2016) average values of climate 
data rather than single-year values to calculate the ETz, GWz and BWz of  
each crop.

Step 1: calculating the potential evapotranspiration
Potential evapotranspiration ET0 (mm) was calculated as

R G γ u e e

γ u
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900
+ 273 2 s a
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in which Rn is the net radiation at the crop surface (MJ m−2 day−1), G is the 
soil heat flux density (MJ m−2 day−1), Tmean is the daily average tempera-
ture (°C), u2 is the wind speed at 2 m height (m s−1), es is the saturation 
vapour pressure (kPa), ea is the actual vapour pressure (kPa), Δ is the 
slope of the vapour pressure–temperature curve (kPa °C−1) and γ is the 
psychrometric constant (kPa °C−1).

Step 2: calibration of crop coefficients and calculation of crop water 
requirement

Crop coefficients were calculated using the single-valued averag-
ing method recommended by Allen et al.38. In general, their recom-
mended Kz is applicable for average semi-humid climate conditions 
(with a minimum relative humidity of 45% and an average wind speed 
of 2 m s−1). The Kz therefore needs to be revised according to local con-
ditions. In this study, we calibrated the crop coefficients of selected 
crops according to the climatic conditions in the specific study areas 
of China based on the calibration equation suggested by Allen et al.38 
(equation (3)):

K K u h= + [0.04( − 2) − 0.004(RH − 45)]( /3) (3)z z(tab) 2 min
0.3

in which Kz(tab) is the crop coefficient under the standard conditions 
at different growth stages (based on Allen et al.38), RHmin is the aver-
age value of the daily minimum relative humidity during a particu-
lar growth stage (%) and h is the average height of the crop during a 
particular growth stage (m). After making this adjustment, the crop 
water requirement (ETz) was then calculated as the product of Kz  
and ET0.

KET = ET (4)z z 0

Step 3: calculation of crop-specific green and blue water demand
Crop-specific green and blue water demands were calculated as:

∑ PGW = 10 × min(0, ET , ) (5)z z t t, eff,

∑ PBW = 10 × max(0, ET − ) (6)z z t t, eff,

in which GWz is the green-water use of crop z, BWz is the blue-water 
demand of crop z, ETz,t refers to the water requirement in the tth growth 
period of the crop and Peff,t is the effective precipitation in the tth growth 
stage of the crop calculated following Yin et al.39. To compare crops with 
different lengths of growing periods, we converted into annual values 
as GWz and BWz of crops (expressed in m3 ha−1).

On rainfed cropland, we can only obtain the data for green-water 
demand (GWz). On irrigated cropland, however, we can obtain the data 
for both green-water demand (GWz) and blue water demand (BWz) for 
crop z, which was initially calculated from weather station data. We 
then interpolated the GWz and BWz values into grid-cell (5-arcmin) 
data as GWi,z and BWi,z using the ‘inverse distance weighted’ tool in 
ArcGIS 10.2 software.

Step 4: current green and blue water demand at the grid level
Current total green-water demand (TGWirr/ra,i) and total blue-water 

demand (TBWirr,i) of each grid were calculated as:

∑TGW = HA × GW (7)i z i z i zirr/ra, irr/ra, , ,

∑TBW = HA × BW (8)i z i z i zirr, irr, , ,
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Current state of sustainability outcomes
Unlike the process-based modelling required to estimate crop water 
demand above, fertilizer use, pesticide use and farmer incomes are 
assessed directly on the basis of official statistical data, whereas the 
GHG intensity data are from previous literature20.

Current fertilizer use. Current nitrogen fertilizer use in grid i (TFNirr/ra,i)  
was calculated as:

∑TFN = HA × FN (9)i z i z i zirr/ra, irr/ra, , ,

in which FNi,z is the nitrogen fertilizer use intensity of different crops 
(kg ha−1). Current phosphorus (TFPirr/ra,i) and potash (TFKirr/ra,i) fertilizer 
use was calculated by changing FNi,z to phosphorus (FPi,z) or potash 
(FKi,z) fertilizer use intensity. Owing to unavailable data at finer spatial 
scales, we perform the analysis using provincial average fertilizer-use 
intensities as input data to represent these intensities in each grid, 
taken from Cost-benefit of Agricultural Products in China21. In our 
uncertainty analysis, we also improved the resolution of fertilizer-use 
data, for which we constructed the intensity of fertilizer use for different 
crops at the county level by using the total amount of chemical fertilizer 
application at the county level40 and the intensity of fertilizer applica-
tion for different crops at the provincial level21 (Fig. S17). It is noted 
that the fertilizer data from NDRC cover four parts, that is, nitrogen, 
phosphorus, potash and compound fertilizer. We divide the compound 
fertilizer into nitrogen, phosphorus and potash fertilizer according to 
its chemical composition: for the diammonium hydrogen phosphate 
((NH4)2HPO4), we divide it into N and P2O5 according to the ratio 1:2.56; 
for the other compound fertilizers, we divide it into N, P2O5 and K2O 
according to the ratio 1:1:1.

Current pesticide use. Current pesticide use in grid i (TPTirr/ra,i) was 
calculated as:

∑TPT = HA × PT (10)i z i z i zirr/ra, irr/ra, , ,

in which PTi,z = PTCi,z/pc, PTCi,z is the crop-specific pesticide cost 
per hectare (US$ ha−1) in grid i, which was taken in the same way as 
fertilizer-use intensity and pc (US$ kg−1) is the price per unit of ferti-
lizer, which was taken from the National Bureau of Statistics of China18.

Farmer incomes. Farmer incomes at the grid level (TFIirr/ra,i) were cal-
culated as:

∑TFI = HA × YLD × NetProfit (11)i z i z i z i zirr/ra, irr/ra, , irr/ra, , ,

in which NetProfiti,z is the farmer’s net profit (US$ kg−1) acquired for crop 
z in grid i. The farmer incomes coefficient information was taken from 
the NDRC21 and processed in the same way as fertilizer-use intensity.

Current GHG emissions. Current GHG emissions in grid i (TGHGirr/ra,i) 
were calculated as:

∑TGHG = HA × GHG (12)i z i z i zirr/ra, irr/ra, , ,

in which GHGi,z is the crop-specific GHG intensity (Mg CO2 eq ha−1) 
in grid i, taken from Carlson et al.20. Because the crop-specific GHG 
intensities from Carlson et al. are for the year 2000, we used the FAO’s 
crop emissions data1 to estimate the percent changes in China’s GHG 
emissions from 2000 to 2010 and update grid-level crop-specific GHG 
intensities for 2010.

The crop-switching model
To evaluate different degrees of coordination in government manage-
ment, we developed three groups of crop-optimization scenarios 

(Tables 1 and S5) and solved them using the software GAMS (version 
22.8). (1) The first group, G1 (no coordination), simulates the poten-
tial behaviour of different independent government departments 
with a narrow focus on their own political responsibility. Specifically, 
the first group contains eight optimization scenarios that assign pri-
ority to a single sustainability objective in each scenario to explore 
the extent to which a single dimension of agricultural sustainability 
could be improved through crop switching. (2) The second group, G2 
(cross-ministry coordination), aims to enhance cross-ministry coor-
dination by considering other sustainability objectives. Specifically, 
the second group ensures that assigning priority to one sustainabil-
ity dimension cannot degrade outcomes for the other sustainability 
dimensions. There are also eight scenarios in G2 for eight agricultural 
sustainability dimensions. (3) The third group, G3 (central coordina-
tion), examines whether co-benefits can emerge for all sustainability 
dimensions simultaneously when the central government of China 
leads the coordination. Specifically, the third group only includes 
one scenario that optimizes all sustainability dimensions such that 
the improvement margins in all sustainable dimensions are as high 
as possible while their between-dimension differences are as low as 
possible.
(1) �G1 (no coordination): siloed approach assigning priority to a single 

sustainability objective each time.
Min/max SDGDim (minimize national use of blue water or other six sus-

tainable dimensions or maximize national farmer incomes) such that

∑
∑

x RCA ⋅ ⋅ ⋅ YLD

≥ Production
(13)

i j i i j j z i z

z

{irr,ra}, , irr/ra, irr/ra, , , irr/ra, ,

{irr,ra} Cur,irr/ra,

∑
∑

x RCA ⋅ ⋅ ⋅ YLD ⋅ NetProfit

≥ TFI
(14)

j z i i j j z i z i z

i
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∣

∑ x ≤ 1 (17)
j i jirr/ra, ,

∑ ∑x RCA ⋅ ⋅ = HA (18)
j z i i j j z z i z, irr/ra, irr/ra, , , irr/ra, ,

∑ x RSDG = CA ⋅ ⋅ ⋅ UI (19)
i j z i i j j z i zDim {irr,ra}, , , irr/ra, irr/ra, , , Dim, ,

in which Dim represents the eight agricultural sustainability dimen-
sions and SDGDim is the total national use of Dim; CAirr/ra,i is the cultivated 
area of irrigated or rainfed croplands in grid i that was calculated by 
the harvested area and the growth-stage information of crops in each 
grid; j is the rotation number (j = s1, s2, …, s153) (Tables S4 and S13); 
 xirr/ra,i,j is the proportion of the irrigated or rainfed cultivated land apply-
ing crop rotation j in grid i; Rj,z represents the number that crop z is 
planted per year in rotation j, which are built using the crop-rotation 
model (Supplementary Information Section 1.2.2) according to the 
crop-specific growth-stage information in each region of China 
(Tables S2 and S3 and Fig. S3); UIDim,i,z is the use (or emissions) intensity 



of a specific sustainability dimension (Dim) in grid i of crop z; 
CURRENTDim,irr/ra,i represents the current use (or emissions) of a specific 
sustainability dimension (Dim) across all crops in grid i; UPBOUNDDim,i 
represents the upper boundary of the total use (or emissions) across 
all crops in grid i, which is greater than ∑ CURRENT i{irr,ra} Dim,irr/ra,  when 
IndDim,i ≤ BDDim,i. IndDim,i represents an indicator to evaluate the scarcity 
or stress of a sustainability dimension (Dim) in grid i and BDDim,i is a 
scientifically defined sustainability boundary. Taking blue water as  
an example, UPBOUND = BD /Ind ⋅ CURRENTi i i iBW, BW, BW, BW,irr, , in which 
IndBW,i is the blue-water-scarcity indicator, which is equal to blue- 
water use divided by irrigation water availability, taken from the  
work of Zhou et al.35 (with boundary equal to 0.2), which is a presump-
tive standard for environmental flow requirements following  
Richter et al.41. For nitrogen and phosphorus fertilizer, UPBOUND =iN/P,  
∑ CURRENT − Indi i{irr,ra} N/P,irr/ra, N/P, , in which IndN/P,i is the nutrient bal
ance indicator representing the excess nitrogen and phosphorus  
nutrients in the soil (kg)—meant to prevent nutrient loading and  
eutrophication—taken from West et al.42 and the boundaries BDN/P,i  
are all 0. For green water and pesticides, we impose the constraint  
that they cannot degrade at the grid level. For GHGs and potash, con-
sidering that the distribution of GHG emissions across grids is  
inconsequential from a climate change perspective and that the appli-
cation of potash fertilizer has little adverse impact on the local  
environment, we impose constraints at the national level on these two  
dimensions.

Equation (13) represents the constraint on crop production at the 
national level. Equation (14) is the constraint of farmer incomes at the 
grid level. Equations (15) and (16) represent the constraints of resource 
use and environmental footprints on the national and grid levels, 
respectively. For the grids experiencing unsustainable resource use  
at present (IndDim,i ≥ BDDim,i), we do not allow resource use to increase; 
for the grids in which resource use is not beyond the sustainability 
boundary (IndDim,i < BDDim,i), we allow resource use to increase but only 
up to the sustainability boundary. For the scenario that minimizes 
national total GHG emissions or potash fertilizer use, we omit the  
estimation of equation (16), as there are no grid-level constraints for 
these two dimensions. Equations (17) and (18) are constraints of cul-
tivated land and harvested land, respectively. The harvested area is 
held constant at the grid level. Equation (19) is the overall optimiza-
tion object.
(2) �G2 (cross-ministry coordination): assigns priority to one sustain-

ability dimension while not degrading outcomes for the other sus-
tainability dimensions.

Min/max SDGDim (minimize national use of blue water or other six  
sustainable dimensions or maximize national farmer incomes) such 
that

∑
∑

x RCA ⋅ ⋅ ⋅ YLD

≥ Production
(20)

i j i i j j z i z

z
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Compared with the G1 scenarios, we set constraints on all sustainable 
dimensions at the national (equations (21)–(28)) and grid (equations 
(29)–(34)) levels (except GHG emissions and potash fertilizer at the 
grid level).
(3) �G3 (central coordination): optimizes all sustainability dimensions 

such that the improvement margins in all dimensions are as high 
as possible while their between-dimension differences are as low 
as possible.

Max Aver(GDim)/Var(GDim) such that
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in which Aver(GDim) and Var(GDim) are the average and variance of the 
improvement of all sustainable dimensions, respectively. Here we per-
form a limited analysis with weights of 1 or 0 for the seven sustainability 
indicators to demonstrate the flexibility of our approach (see Extended 
Data Fig. 1). In the first step, we assign a weight of 0 or 1 to each of the 
seven indicators so that there are 27 (128) crop-switching solutions, each 
of which is Pareto optimal. The weights 0 and 1 represent whether the 

planners consider the corresponding indicator the least or the most 
important, respectively. We can also simulate the options with more 
weights, but the solution will not have an ending. In the second step, 
the planners and decision-makers can choose any solution according 
to their prioritization of different indicators. In the G3 scenario (blue 
line in Extended Data Fig. 1), we choose the solution in which improve-
ment margins in all sustainable dimensions are as high as possible while 
their between-dimension differences are as low as possible. This also 
provides a way to compare the G3 scenario with the G1 and G2 scenarios.

According to the above explanation, the G3 scenario represents a 
Pareto-optimal solution when setting a weight of 0 or 1 for each indica-
tor (Extended Data Fig. 1). Of course, if we set other weights between 0 
and 1 for each indicator (which can be infinite), other Pareto-optimal 
solutions may emerge that are closer to the Pareto frontier. As such, our 
approach provides flexibility by allowing planners and decision-makers 
to place greater weight on the sustainability outcomes that they deem 
most important.

Uncertainties and limitations
We performed uncertainty analyses by relaxing constraints on all sus-
tainability dimensions and farmer incomes at the grid level (Table S6 
and Fig. S16), relaxing the constraint of crop production (Tables S6 
and S7) and testing the sensitivity of our outcomes to the input data 
(Table S6 and Fig. S17). The analysis shows that, if these constraints 
are lifted, there will be increased improvements in environmental sus-
tainability and farmer incomes at the national level (Extended Data 
Fig. 2). However, there will be some regional tradeoffs. For example, 
farmer incomes would decrease in some areas (thereby potentially 
requiring subsidies; Table S8) or blue-water use would increase in some 
water-scarce areas (Fig. S16). As well as quantifying uncertainties, we 
note that our findings should be interpreted with several considera-
tions in mind. First, our analysis was limited by the spatial resolution 
of the available underlying datasets. Specifically, we are not able to 
capture field-level heterogeneity in suitability for different crops (for 
example, flood plains versus highlands) and economies of scale that 
may arise (or degrade) from increases (or decreases) in monoculture 
cropping, which should be taken into account for the implementa-
tion of crop switching. Second, crop production is an interconnected 
ecological process, in which changing one input would change other 
inputs, for example, irrigation change would affect fertilizer use and 
GHG emissions. Although such interconnections are beyond the scope 
of this study, their potential influence (either positive or negative) on 
sustainability outcomes is important to take into account when seeking 
to responsibly implement crop-switching interventions. Moreover, our 
model has the limitations of not considering the switching costs and 
assumption of the constant harvested area under crop switching, which 
are discussed in detail in Supplementary Information Sections 2.6 
(Table S8) and 2.7 (Figs. S18 and S19).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The SPAM database (version 1.1, year 2010) used in this study can be 
downloaded at https://mapspam.info/. We extracted China’s data from 
the SPAM database and deposited it online (https://doi.org/10.5281/
zenodo.7575266). The historical climate data for the crop water model 
and the crop growth stage data for the crop-rotation model are available 
at http://data.cma.cn/. The crop coefficients (Kz(tab)) and irrigation effi-
ciency coefficients used for calculating water use of crops are available 
at http://www.fao.org/3/X0490E/x0490e0b.htm and http://www.mwr.
gov.cn/, respectively. Crop-specific GHG emissions data at the grid level 
is from Carlson et al.20. Crop-specific fertilizer use, pesticides use and 
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farmer income data are available in the Agricultural Cost and Benefit 
Statistical Yearbook 2011 (https://doi.org/10.5281/zenodo.7575632). 
The fertilizer data at the county level for uncertainty analysis was from 
the proprietary County-level Agricultural Database of the Chinese 
Academy of Agricultural Sciences (http://aii.caas.net.cn/). The irriga-
tion water availability data used for water-scarcity calculation is taken 
from Zhou et al.35. The nutrient balance data can be downloaded from 
https://www.science.org/doi/10.1126/science.1246067.

Code availability
The linear programming solution procedure was used to solve our 
model with the equations illustrated in the Methods section of our 
manuscript. The standard optimization solver (CPLEX 22.1) available 
in open-access software (GAMS) can be used to replicate the analysis. 
The code and related description of CPLEX 22.1 can be accessed at 
https://www.gams.com/latest/docs/S_CPLEX.html.
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Extended Data Fig. 1 | Parallel coordinate plot with crop-switching 
strategies that are Pareto optimal for all dimensions. Each coordinate 
corresponds to a sustainability dimension and each line connecting different 
values between the coordinates corresponds to a single Pareto-optimal 

solution. The bold blue line shows the crop-switching solution under G3. BW, 
blue water; GW, green water; GHGs, greenhouse gas emissions; N, nitrogen 
fertilizers; P, phosphorus fertilizers; K, potash fertilizers.



Extended Data Fig. 2 | Decomposition of the sources of uncertainty. 
‘Baseline’ (dark blue bar) shows the reduction in resource use, reduction in 
environmental impacts and increase in farmer incomes under the G2 scenario. 
Other colours represent the difference between results of uncertainty scenarios 
and the baseline scenario (G2 scenario) (see Table S6 and Supplementary 

Information Section 2.5 for details on the varying assumptions about different 
uncertainty sources). BW, blue water; GW, green water; GHGs, greenhouse gas 
emissions; N, nitrogen fertilizers; P, phosphorus fertilizers; K, potash fertilizers; 
PEST., pesticides; INC., farmer incomes.
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Extended Data Fig. 3 | Comparison of proposed crop switching with 
historical crop distribution. The five horizontal lines in each panel show  
crop distributions at decadal intervals (that is, between 1980 and 2020) that 
can be compared with our proposed crop switching. The colour scale of the 
bars corresponds to the share of current crop production of each region to the 
national total; for instance, the darker shades of the bars for wheat in North 
China (NC) and rice in the Yangtze River Plain (YZ) indicate that these regions 
account for large shares in the total national production of those crops. Min, 
minimize; Max, maximize; BW, blue water; GW, green water; GHGs, greenhouse 
gas emissions; N, nitrogen fertilizers; P, phosphorus fertilizers; K, potash 
fertilizers; PEST., pesticides; INC., farmer incomes. *Note that because crop 

distribution changes during the past ten years are only available based on  
the administrative divisions, the regional aggregation used here is slightly 
different from that used in our crop-switching model, which is based on the 
agricultural ecological zone. The regional coverage is Northeast Plain and 
Inner Mongolia (NE) = Heilongjiang, Jilin, Liaoning, Inner Mongolia; North 
China (NC) = Beijing, Tianjin, Hebei, Henan, Shandong; the Yangtze River Plain 
(YZ) = Jiangxi, Shanghai, Zhejiang, Anhui, Jiangsu, Hubei, Hunan; Southern 
China (SC) = Fujian, Guangdong, Hainan; Northwest Region (NW) = Xinjiang, 
Ningxia, Shaanxi, Gansu, Shanxi; Southwest Region (SW) = Guangxi, 
Chongqing, Guizhou, Sichuan, Yunnan; Tibet Region (TR) = Tibet, Qinghai.



Extended Data Fig. 4 | Trend agreement between proposed and recently 
observed changes in cropping patterns. Circle colours denote whether—
compared with our proposed crop switching (G3)—the observed distribution 
change of the crop in that region during the past ten years has moved in the 
opposite direction and needs to reverse the direction (red), the same direction 
but faster rate and needs to slow down (yellow) or the same direction and the 
same/slower rate and needs to speed up (green). Faded circles indicate that a 
crop in that region accounts for a small fraction of the national production. The 
top signs (+, −, 0) inside each circle represent how the sowing area of the crop is 
proposed to change under our crop-switching scenarios, whereas the bottom 
signs (+, −, 0) show recent crop distribution changes during 2010–2020. We 
find that, in 68% (21/32) of cases, recent cropping-pattern changes are moving 

in the same (green or yellow) direction as our proposed switches.  *Note that 
because crop distribution changes during the past ten years are only available 
based on the administrative divisions, the regional aggregation used here is 
slightly different from that used in our crop-switching model, which is based on 
the agricultural ecological zone. The regional coverage is Northeast Plain and 
Inner Mongolia (NE) = Heilongjiang, Jilin, Liaoning, Inner Mongolia; North 
China (NC) = Beijing, Tianjin, Hebei, Henan, Shandong; the Yangtze River Plain 
(YZ) = Jiangxi, Shanghai, Zhejiang, Anhui, Jiangsu, Hubei, Hunan; Southern 
China (SC) = Fujian, Guangdong, Hainan; Northwest Region (NW) = Xinjiang, 
Ningxia, Shaanxi, Gansu, Shanxi; Southwest Region (SW) = Guangxi, 
Chongqing, Guizhou, Sichuan, Yunnan; Tibet Region (TR) = Tibet, Qinghai.



Article

Extended Data Fig. 5 | Comparison of sustainability outcomes between 
proposed crop switching (G2) and observed crop distribution changes 
during the past ten years. The baseline points for these comparisons are the 
sustainability outcomes in 2010. The left-hand panels (a–g) show the total net 
changes across all crops in the seven regions. The right-hand panels (h–n) show 
the specific changes for each crop in the seven regions. BW, blue water; GW, 
green water; GHGs, greenhouse gas emissions; N, nitrogen fertilizers; P, 
phosphorus fertilizers; K, potash fertilizers; PEST., pesticides; INC., farmer 
incomes. *Note that because crop distribution changes during the past ten 
years are only available based on the administrative divisions, the regional 

aggregation used here is slightly different from that used in our crop switching 
model, which is based on the agricultural ecological zone. The regional 
coverage is Northeast Plain and Inner Mongolia (NE) = Heilongjiang, Jilin, 
Liaoning, Inner Mongolia; North China (NC) = Beijing, Tianjin, Hebei, Henan, 
Shandong; the Yangtze River Plain (YZ) = Jiangxi, Shanghai, Zhejiang, Anhui, 
Jiangsu, Hubei, Hunan; Southern China (SC) = Fujian, Guangdong, Hainan; 
Northwest Region (NW) = Xinjiang, Ningxia, Shaanxi, Gansu, Shanxi; Southwest 
Region (SW) = Guangxi, Chongqing, Guizhou, Sichuan, Yunnan; Tibet Region 
(TR) = Tibet, Qinghai.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Uncertainty ranges of crop redistribution. Each short 
horizontal line in the group of eight bars in each panel represents, from left to 
right, the baseline scenarios of minimizing blue water, green water, GHGs, N, P, 
K, pesticides and maximizing farmer incomes under G2 (eight scenarios). The 
nine individual bars from left to right (light to dark shade) inside each broader 
bar represent uncertainty 1–9 (see Table S6 and Supplementary Information 
Section 2.5 for details on the varying assumptions about different uncertainty 
sources). The five long horizontal lines show crop distributions at decadal 
intervals (that is, between 1980 and 2020) that can be compared with our 
proposed crop switching. *Note that because crop distribution changes during 

the past ten years are only available based on the administrative divisions,  
the regional aggregation used here is slightly different from that used in our 
crop switching model, which is based on the agricultural ecological zone. The 
regional coverage is Northeast Plain and Inner Mongolia (NE) = Heilongjiang, 
Jilin, Liaoning, Inner Mongolia; North China (NC) = Beijing, Tianjin, Hebei, 
Henan, Shandong; the Yangtze River Plain (YZ) = Jiangxi, Shanghai, Zhejiang, 
Anhui, Jiangsu, Hubei, Hunan; Southern China (SC) = Fujian, Guangdong, 
Hainan; Northwest Region (NW) = Xinjiang, Ningxia, Shaanxi, Gansu, Shanxi; 
Southwest Region (SW) = Guangxi, Chongqing, Guizhou, Sichuan, Yunnan; 
Tibet Region (TR) = Tibet, Qinghai.
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Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software were used to collect data in this study.

Data analysis ArcGIS 10.2 is used for analyze the crop sepecific yield and harvest data and the water use, fertilizer use, pesticide use, GHGs emission and 
farmers incomes data at the grid level; GAMS 22.8 is used for solving the switching model.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Spatially distributed irrigated/rainfed yield and harvested area of nine crops were taken from the Spatial Production Allocation Model (SPAM) database (version 1.1, 
the year 2010) (https://mapspam.info/), we extracted China’s data from the SPAM database and deposited it online (https://doi.org/10.5281/zenodo.7575266).; 
Crop-specific greenhouse gas (GHG) emissions data were taken from Carlson et al. (https://doi.org/10.1038/nclimate3158); 
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Crop-specific fertilizer use (nitrogen, phosphorous, potash, and compound fertilizer), pesticides use, and farmer incomes data were taken from the Agricultural Cost 
and Benefit Statistical Yearbook 2011 (in Chinese), published by the National Development and Reform Commission (NDRC) of China (https://doi.org/10.5281/
zenodo.7575632); 
The fertilizer data at the county level for uncertainty analysis was from the County-level Agricultural Database of Chinese Academy of Agricultural Sciences (http://
aii.caas.net.cn/); 
The irrigation water availability data in different provinces in China used for blue water scarcity calculation was obtained from the National Long-term Water Use 
Dataset of China (https://figshare.com/articles/Zhou_et_al_2020_PNAS_dataset_xlsx/11545176); 
The spatial distribution of nutrient balance data was taken from West et al. (https://www.science.org/doi/10.1126/science.1246067); 
Crop growth stage data based on the weather stations were obtained from the China Meteorological Data Service Center (CMDC) (http://data.cma.cn/); 
The mapping layer of cropping regions was obtained from Institute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences; 
Crop coefficients (Kz(tab)) were obtained from FAO (http://www.fao.org/3/X0490E/x0490e0b.htm) and calibrated according to the climatic conditions in China; 
The irrigation efficiency coefficients in different provinces were obtained from the Ministry of Water Resources of the People’s Republic of China (http://
www.mwr.gov.cn/); 
Historical climate data (from 1987 to 2016) at 839 weather stations in China was obtained from the China Meteorological Data Service Center (CMDC) (http://
data.cma.cn/), which includes net radiation at the crop surface, soil heat flux density, daily average temperature, wind speed at 2 meters height, saturation vapor 
pressure, actual vapor pressure, the slope of the vapor pressure-temperature curve, psychrometric constant, average value of the daily minimum relative humidity, 
the average height of the crop during a particular growth stag, and effective precipitation; 
All other relevant data are available from the corresponding authors.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid 
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in 
study design whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the 
source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for 
sharing of individual-level data; provide overall numbers in this Reporting Summary.  Please state if this information has not 
been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based 
analysis.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Achieving food system sustainability is a multi-dimensional challenge. In China, a doubling of crop production since 1990 has 
compromised other dimensions of sustainability. While the country is promoting various interventions to enhance production 
efficiency and reduce environmental impacts, there is little understanding of whether crop switching can achieve more sustainable 
cropping systems and whether coordinated action is needed to avoid tradeoffs. Here we combine high-resolution data on crop-
specific yields, harvested areas, environmental footprints, and farmer incomes to first quantify the current state of crop production 
sustainability. Under varying levels of inter-ministerial and central coordination, we execute spatial optimizations that redistribute 
crops to meet a suite of agricultural sustainable development targets. 

Research sample The crop yield and harvested area data from SPAM database and GHG emission data from Carlson et al. were selected due to its high 
resolution, wide variety of crops, and suitable for crop switching model. Crop growth stage data were derived from CMDC weather 
stations, which improved the accuracy of crop rotation model. The climate and weather data used in the crop water model were 
selected as they are the most commonly used and widely recognized database for water calculation.

Sampling strategy We do not use any sampling procedure to conduct our study.
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Data collection W.X., Z.Z., X.C., F.W. and A.Z. extracted the following data from respective sources: 
Spatially distributed irrigated/rainfed yield and harvested area of nine crops were taken from the Spatial Production Allocation Model 
(SPAM) database (version 1.1, the year 2010) (https://mapspam.info/), we extracted China’s data from the SPAM database and 
deposited it online (https://doi.org/10.5281/zenodo.7575266); crop-specific greenhouse gas (GHG) emissions data were taken from 
Carlson et al. (https://doi.org/10.1038/nclimate3158); crop-specific fertilizer use (nitrogen, phosphorous, potash, and compound 
fertilizer), pesticides use, and farmer incomes data were taken from the Agricultural Cost and Benefit Statistical Yearbook 2011 (in 
Chinese), published by the National Development and Reform Commission (NDRC) of China (https://doi.org/10.5281/
zenodo.7575632); the fertilizer data at the county level for uncertainty analysis was from the County-level Agricultural Database of 
Chinese Academy of Agricultural Sciences (http://aii.caas.net.cn/); the irrigation water availability data in different provinces in China 
used for blue water scarcity calculation was obtained from the National Long-term Water Use Dataset of China (https://figshare.com/
articles/Zhou_et_al_2020_PNAS_dataset_xlsx/11545176); the spatial distribution of nutrient balance data was taken from West et al. 
(https://www.science.org/doi/10.1126/science.1246067); crop growth stage data based on the weather stations were obtained from 
the China Meteorological Data Service Center (CMDC) (http://data.cma.cn/); the mapping layer of cropping regions was obtained 
from Institute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences; crop coefficients (Kz(tab)) 
were obtained from FAO (http://www.fao.org/3/X0490E/x0490e0b.htm) and calibrated according to the climatic conditions in China; 
the irrigation efficiency coefficients in different provinces were obtained from the Ministry of Water Resources of the People’s 
Republic of China (http://www.mwr.gov.cn/); historical climate data (from 1987 to 2016) at 839 weather stations in China was 
obtained from the China Meteorological Data Service Center (CMDC) (http://data.cma.cn/), which includes net radiation at the crop 
surface, soil heat flux density, daily average temperature, wind speed at 2 meters height, saturation vapor pressure, actual vapor 
pressure, the slope of the vapor pressure-temperature curve, psychrometric constant, average value of the daily minimum relative 
humidity, the average height of the crop during a particular growth stag, and effective precipitation.

Timing and spatial scale The timing of crop-specific yield, harvested area, fertilizer use, pesticides use and farmer incomes are 2010; the timing of GHG 
emissions of nine crops is 2000, we used FAO’s crop emissions data to estimate percent changes in China's GHG emissions from 2000 
to 2010 and update grid-level crop-specific GHGs intensities for 2010; the timing of irrigation water availability data is 2010; the 
timing of crop growth stage data and historical climate data ranges over 1992 - 2014 and 1987 - 2016, respectively, we used the 
average values to avoid the unrepresentative data in a single year. 
The spatial scale of crop yield, harvested area, GHG emissions and nutrient balance data is 0.5°x0.5° horizontal resolution; the crop-
specific fertilizer use, pesticides use, farmer income, irrigation water availability, and irrigation efficiency coefficients are provincial 
level data; the fertilizer data at the county level for uncertainty analysis are county level data; the growth stage of 13 crops and 
historical climate data are collected from 778 agro-meteorological stations and 839 weather stations, respectively.

Data exclusions No data were excluded from the analyses

Reproducibility Our study did not involve comparisons of treatment groups or populations so we did not employ traditional experimental design and 
ANOVA techniques. Therefore, replication of experimental units is not applicable to our study design. The reliability of our results was 
evaluated based on reported uncertainty analyses.

Randomization We used crop switching model in this study, so randomization is not relevant.

Blinding This study used a crop switching model, so no relationship with blinding.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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