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With the turn of the century,Australian agricultural productivity growth sloweddramatically.We investigate
the connection between this slowdown and climatic factors by comparing regional-level growth patterns
before and after the advent of the AustralianMillenniumDroughts. The analysis incorporates climatic vari-
atesdirectly into theproductivityaccounting framework to reflect the stochasticnatureofagriculturalproduc-
tion, andmeasuredproductivity growth isdecomposed into four components: technological change,weather-
related change, input-scale adjustment, and diffusion (adaptation). Nonparametric productivity measure-
ment and statistical techniques are used to quantify and examine the patterns of the observed productivity
slowdown. The analysis suggests that the primary determinant of the slowdown is not a slowdown in techno-
logical innovation but climatic-related changes in the pattern and rate of diffusion of technological advances.
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Strong agricultural productivity growth in the
OECD countries has proven a key driver of
global development.Agrowing bodyof evidence
suggests, however, that agricultural productivity
growth has slowed dramatically since 2000 (Thir-
tle et al. 2004;Alston, Babcock, and Pardey 2010;
Sheng, Mullen, and Zhao 2010; Alston, Ander-
sen, and Pardey 2015 and Sheng et al. 2020).
For example, Sheng et al. (2020) report that
OECD agricultural productivity grew at a slug-
gish annual rate of 0.5% after 2000, or approxi-
mately one-third of its average since 1973.

Australiaseemsaprimeexample.Between1979
and 2013, its agricultural productivity grew at an
annualaverage rateof1.6%,putting it only slightly

behind US agriculture, which grew at an average
rate of 1.69%.That strong performance, however,
masks a severe slump. Between 1979 and 1994,
the annual growth rate was 2.8%, while after that
it was 0.6%(Sheng,Yang, andZhao 2018).
Popular explanations for this pronounced

slump include climatic conditions. Particular
emphasis has been given to the Millennium
Droughts (Stern 2007; Garnaut 2011; BOM
2015; Hughes, Lawson, and Valle 2017). For
example,Hughes, Lawson, andValle (2017) esti-
mated that drought-related conditions decreased
agricultural output by 30% between 2003 and
2011 (BOM 2015; Hughes, Lawson, and Valle
2017). These findings accord with other studies
linking poor agricultural performance and
weather-related phenomena (Mendelsohn,
Nordhaus, and Shaw 1994; Schlenker, Hane-
mann, and Fisher 2005; Deschênes and Green-
stone 2007; Fisher et al. 2012; Cárdenas
Rodríguez, Haščič, and Souchier 2016; Yang
and Shumway 2016; Liang et al. 2017; Ortiz-
Bobea, Knippenberg, and Chambers 2018).
The simultaneous occurrence of the Millen-

nium Droughts and the Australian productivity
slowdown defines a natural experiment that
facilitates investigating the interaction between
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extreme climatic conditions and productivity
performance. Using techniques developed by
Chambers and Pieralli (2020), we exploit that
natural experiment by decomposing measured
annual productivity growth into four compo-
nents (technological change, weather-related
effects, input/scale effects, and technological dif-
fusion) and analyzing how their performance
has varied with advent of the Millennium
Droughts. As in Chambers and Pieralli (2020),
the analysis recognizes agricultural production’s
stochastic nature by incorporating measured
weather variates directly into the productivity
accounting. Unlike Chambers and Pieralli
(2020), who study long-term changes (over three
decades) in productivity performance, we com-
pare the behavior of year-to-year productivity
growth for a pre-Millennium-Droughts period
and a Millennium-Droughts period. That allows
us to examine how the advent of the extreme
weather conditions associated with the Millen-
nium Droughts affected short-term patterns of
agricultural productivity growth. To ensure
robustness to varying assumptions about func-
tional structure and the underlying data-gener-
ating processes, the analysis relies on
nonparametric productivity measurement tech-
niques and nonparametric statistical analyses.
The empirical analysis uses data on broadacre
Australian agriculture for thirty-two production
regions contained in three production zones for
1979–2013.Our results suggest that the observed
productivity slowdown is not statistically associ-
atedwith a slowdown in the average rate of tech-
nological change. Instead, weather-induced
changes in patterns of technological diffusion,
which differ across the three production zones,
seem to have played a more prominent role.
Thepaperproceedsasfollows.Thenextsection

discusseshistoricalAustralianproductivityperfor-
mance. We then develop the analytic model, the
productivity decomposition, and the empirical
method for approximating the aggregate technol-
ogy for Australian non-irrigated agriculture. A
description of the data follows, and then we pre-
sent our empirical results. The paper then closes.

Australian Non-Irrigated Agricultural
Productivity Performance

Non-irrigated (broadacre) agriculture dominates
Australian agriculture. In 2013, it generated out-
put worth A$48.5 billion, or approximately 70%
of total agricultural output. Broadacre

agriculture consists of 128–129 thousand farms
distributed over thirty-two regions in three cli-
matic zones (High-Rainfall, Wheat-Sheep, and
Pastoral; ABARES 2018, see figure 1). Its non-
irrigated nature ensures that output performance
is stochastic and depends on natural occuring
inputs, such as soil moisture and temperature,
that are beyond the direct control of producers.

Figure 2(a) depicts Australian-broadacre
total factor productivity (TFP) behavior
between 1978 and 2014. TFP increased over that
period from a base of 1 in 1978 to 1.47 in 2013.
But as figure 2(a) also shows, the pattern of that
growth changed dramatically over time. After
1994, productivity growth slowed dramatically.
Where it had grown at an annual average rate
of 2.8% before 1994, after it only grew at 0.6%.

In retrospect, therefore, the extreme drought
conditions experienced in 1994 seem to have
marked the beginning of an era of increased
drought frequency and slow average productivity
growth. Prior to 1994, Australia had experienced
two periods of particularly severe and prolonged
droughts. These were the “Federation Drought”
of 1895–1903 and the “Forties Drought.”
Repeated instances of extreme droughts followed
the 1994 drought, and these increasingly frequent
droughts became known collectively after 2002 as
the “Millennium Droughts” (Productivity Com-
mission 2009; Sheng and Xu 2019).1

Figure 1. Non-irrigated (Broadacre)
agriculture regions in Australia

Source: ABARES (2018).

1 The 2003 drought was originally coined theMillenniumDrought.
Henceforth, we use the plural form to denote the successive droughts
that have occurred since then. The Productivity Commission’s (2009)
Government Drought Support report contains an extensive discussion
of the instances of prolonged drought in Australia.
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Figure 2. Annual TFP index and growth rate in 1978–2014 and smoothed kernel densities of
Australian TFP in 1979–93 and 1999–2013. (a) Australian broadacre agricultural TFP index:
1978–2014 (1978 = 1). (b) Annual TFP growth in Australian broadacre agriculture: 1979–2014
(%). (c) Smoothed kernel densities of TFP in 1979–93 and 1999–2013 (1978 region 111 = 1.0)
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Figure 2(b) shows that after 1994 agricul-
tural productivity growth slowed and became
more variable. Oscillatory annual percentage
changes in productivity (in absolute value
terms) exceeded 5% in twelve out of eight-
een years. If, as is traditional, measured TFP
change is identified with technological change,
this observed behavior signals a rapid oscilla-
tion between periods of technical progress
and technical regress. Literally, this would
require the average farmer to make major
technical advances only to forget them a year
or so later. Absent an assumption of periodic
mass psychosis, this seems implausible. Instead,
one naturally suspects that other factors, likely
beyond producer control and not factored into
current productivity accounting, play a signifi-
cant role in this observed behavior. Weather
is a prime suspect.
Another perspective on this volatility is given

by comparing productivity performance across
the thirty-two regions in three climatic zones
before 1994 and after 1999. Figure 2(c)
depicts smoothed kernel density estimates
of the distribution of regional agricultural
productivity performance for 1979–93 and
1999–2013. Comparing the two distributions
visually, one sees that the latter has shifted to the
right relative to the former. That reflects an
increase in average productivity performance.
But the 1999–2013 distribution is also more pla-
tykurtic than the 1979–93 distribution. Where
the 1979–93 distribution contains a hint of bimo-
dality, none appears in the latter. Instead, less
mass is concentrated near the mean of the latter
distribution and more in its tails.

The Model

Productivity accounting is conducted at an
aggregate level. It traditionally assumes that an
aggregate production function that relates aggre-
gate output to aggregate input exists. We main-
tain that assumption. Our method departs from
traditional productivity analysis by including
weather variates directly into that production
function. This is done to recognize the stochastic
nature of broadacre agricultural production.
Thus, the aggregate production function for
broadacre agriculture is denoted as f(x, w),
where x is the aggregate input and w refers to a
two-vector of weather variates (a soil-moisture
and a temperature variate in this study).
The standard productivity measure is aggre-

gate observed output, denoted by y, divided by

the aggregate input x. Instead of measuring
productivity levels, however, productivity
accounting techniques measure period-to-period
productivity changes to create indexes relative to
a base period. Thus, if there are twoperiods t and
0, the productivity index in period t relative to
that in period 0 (the base period) is given by

ð1Þ TFP t,0ð Þ= yt
xt

� �
=

y0
x0

� �

where subscripted variables and functions cor-
respond to values in period t and 0.

Our studydecomposesmeasured productivity
into distinct components that recognize the sto-
chastic nature of agricultural production. The
decomposition analysis is not intended to
explain the underlying drivers of productivity
growth.2 Instead, its intent is to disentangle
weather-related growth components from more
traditionally recognized sources of growth such
as technological improvement, input-scale
adjustments, and technology adoption. The
decomposition procedure used adapts measures
developed in Chambers and Pieralli (2020) to an
annual framework. Their procedure, in turn,
adapts measures developed by Caves, Christen-
sen, and Diewert (1982), Färe, Grosskopf, and
Lovell (1994), Kumar and Russell (2002), and
Henderson and Russell (2005) to accommodate
the stochastic nature of agricultural production.
It starts by recognizing that production in some
regions may lag technologically behind other
regions. The relatively slow geographic diffusion
of agricultural technologies across producers is a
well-known empirical phenomenon (Schultz
1947; Griliches 1960; Gardner 2002). If a region
operates inside the “best attainable” frontier,
that departure from the frontier can be mea-
sured by dividing observed output, yt, by the
maximal output obtainable from its observed
aggregate input and weather at time t, ft(xt, wt).
We, therefore, define efficiency at time t asEt(yt,
xt, wt) = yt/ft(xt, wt).

3 Using this definition, the
productivity index between period t and period
t − 1 decomposes into two components as

2 An extremely large literature already exists on examining the
drivers of agricultural productivity growth. Roughly put, those
analyses take measured productivity growth and relate it via
regression and other statistical analyses to “causal” factors such
as education and investment in research and development. The
locus classicus is Alston, Norton, and Pardey (1995), to which we
refer the interested reader for an explanation of methods and sum-
mary of results.

3 Our efficiency measure can also be recognized as an output-
oriented radial distance function.
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ð2Þ TFP t, t−1ð Þ= Et yt,xt,wtð Þ
Et−1 yt−1,xt−1,wt−1ð Þ

� f t xt,wtð Þ=xt
f t−1 xt−1,wt−1ð Þ=xt−1

:

The first component, Et yt ,xt ,wtð Þ
Et−1 yt−1,xt−1,wt−1ð Þ, mea-

sures the efficiency with which the technology
available in period t was used relative to that
with which it was used in period t− 1. If this
efficiency index exceeds one, production has
moved closer to the frontier between the two
periods. If it is less than one, production has
moved further away. In the former case, a bet-
ter job of incorporating available technological
innovations into practice is done in period t
than in period t− 1, and in the latter, a
worse job.

The second component of expression (2),
f t xt ,wtð Þ=xt

f t−1 xt−1,wt−1ð Þ=xt−1
, measures the average product

of xt for realized weather wt for frontier pro-
duction ft(xt, wt), relative to the same measure
for period t− 1. If production were efficient in
both periods, this ratio would measure actual
productivity. Otherwise, it measures productiv-
ity that would be realized if production occurred
on the efficient frontier.

We distinguish between three subcompo-
nents of f t xt ,wtð Þ=xt

f t−1 xt−1,wt−1ð Þ=xt−1
. They are, respec-

tively, an index of technological change, a
weather index, and a scale/input index. The
resulting decomposition is written as:

ð3Þ f t xt,wtð Þ=xt
f t−1 xt−1,wt−1ð Þ=xt−1

=Tt, t−1Wt, t−1Xt, t−1

where

ð4Þ Tt, t−1 =
f t xt−1,wt−1ð Þ

f t−1 xt−1,wt−1ð Þ
f t xt,wtð Þ

f t−1 xt,wtð Þ
� �1=2

is the index of technological change.

is the weather index, and

is the scale index. The reasoning behind these
decompositions is developed in Chambers and
Pieralli (2020).
The index of technological change is the geo-

metric average of twodistinctmeasures of techno-
logical change. One, f t xt−1,wt−1ð Þ

f t−1 xt−1,wt−1ð Þ, measures the
shift in the production function between
period t− 1 and period t while holding x and
w equal to that observed in period t− 1. The
other, f t xt ,wtð Þ

f t−1 xt ,wtð Þ, measures the shift in the pro-
duction function between period t− 1 and
period t while holding x and w equal to that
observed in period t. The weather index is a
geometric average of four weather indexes:
two weather indexes computed relative to the
period t technology holding x equal either to
that observed in period t or to that observed
in period t− 1 and two weather indexes com-
puted relative to the period t− 1 technology
holding x equal either to that observed in
period t or to that observed in period t− 1.4

ð5Þ Wt, t−1 =
f t xt−1,wtð Þ

f t xt−1,wt−1ð Þ
f t xt,wtð Þ

f t xt,wt−1ð Þ
f t−1 xt−1,wtð Þ

f t−1 xt−1,wt−1ð Þ
f t−1 xt,wtð Þ

f t−1 xt,wt−1ð Þ
� �1=4

ð6Þ Xt, t−1 =
f t xt,wtð Þ

f t xt−1,wtð Þ
f t xt,wt−1ð Þ

f t xt−1,wt−1ð Þ
f t−1 xt,wtð Þ

f t−1 xt−1,wtð Þ
f t−1 xt,wt−1ð Þ

f t−1 xt−1,wt−1ð Þ
� �1=4

xt−1=xt

4 The geometric averaging of different indexes addresses the fact
that all indexes (just as partial derivatives) depend upon the base at
which they are evaluated. The most familiar examples, of course, are
the differences between theLaspeyres and thePaasche indexes, which
are addressed by calculating the Fisher Ideal Index as the geometric
average of the two. The fact that productivity accounting requires
choosing a base implies that all decomposition exercises will be path
dependent (Kumar and Russell 2002). As just one example, both

f t xt−1 ,wt−1ð Þ
f t−1 xt−1 ,wt−1ð Þ and

f t xt ,wtð Þ
f t−1 xt ,wtð Þ exactly measure technological change

but at different points on the frontier. Generally, they will differ,
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The scale index is a geometric average of four
measures of the average productivity of the
aggregate input computed with respect to dif-
ferent technologies and different observed
weather patterns.
The use of geometric averaging in constructing

thesecomponents followsanapproachestablished
by Fisher (1922). More recently, however, Aczél
(1990) has shown that the geometric average is
the only relative merging procedure satisfying
multiplicativity, positive homogeneity, and

symmetry. Diewert and Fox (2017) show that the
geometric average is a positively homogeneous
symmetric mean that satisfies time reversal.5

These indexes are then translated into
change form by taking logarithms to approxi-
mate percentage changes between period t
and period t − 1. Thus, measured productivity
change decomposes as follows:

ð7Þ lnTFP t, t−1ð Þ=ΔTt,t−1 wt,wt−1,xt,xt−1ð Þ
+ΔWt,t−1 wt ,wt−1,xt,xt−1ð Þ
+ΔXt,t−1 wt,wt−1,xt,xt−1ð Þ
+ΔEt,t−1 yt,yt−1,wt,wt−1,xt,xt−1ð Þ,

where the technological-change indicator is

ð8Þ ΔTt,t−1 wt,wt−1,xt,xt−1ð Þ

=
1
2
lnft xt,wtð Þ− lnft−1 xt,wtð Þ½

+ lnft xt−1,wt−1ð Þ− lnft−1 xt−1,wt−1ð Þ�,

the weather-change indicator is

the input-change indicator is

and the efficiency-change indicator is

ð11Þ ΔEt,t−1 yt,yt−1,wt,wt−1,xt,xt−1ð Þ

= lnEt yt,xt,wtð Þ− lnEt−1 yt−1,xt−1,wt−1ð Þ:

The empirical approach that we use to
approximate the frontier production technol-
ogy is nonparametric productivity analysis or
data envelopment analysis (DEA). As applied
by numerous authors in a variety of applied con-
texts (for example, Charnes et al. 1985; Byrnes
et al. 1988; Fawson and Shumway 1988; Färe,
Grosskopf, and Lee 1990; Färe et al. 1993;
Chambers and Lichtenberg 1996; Kumar and
Russell 2002; Henderson and Russell 2005;
Murty, Russell, and Levkoff 2012; Chambers,
Serra, and Lansink 2014), DEA builds upon
methods originally developed by Afriat (1972)
and traceable through Farrell (1957) to Koop-
mans’ (1951) fundamental activity-analysismodel.
The essential idea is to use observed data to
develop an approximation to the “best attainable
technology” by enveloping it and then imposing
sufficient structure to ensure that it is consistent

ΔWt, t−1 wt,wt−1,xt,xt−1ð Þ= 1
4

lnft xt−1,wtð Þ− lnft xt−1,wt−1ð Þ+ lnft xt,wtð Þ− lnft xt,wt−1ð Þ
+ lnft−1 xt−1,wtð Þ− lnft−1 xt−1,wt−1ð Þ+ lnft−1 xt,wtð Þ

− lnft−1 xt,wt−1ð Þ

2
4

3
5,ð9Þ

ΔXt, t−1 wt,wt−1,xt,xt−1ð Þ= lnxt−1− lnxt +
1
4

lnft xt,wtð Þ− lnft xt−1,wtð Þ+ lnft xt,wt−1ð Þ
− lnft xt−1,wt−1ð Þ+ lnft−1 xt,wtð Þ− lnft−1 xt−1,wtð Þ

+ lnft−1 xt,wt−1ð Þ− lnft−1 xt−1,wt−1ð Þ

2
4

3
5ð10Þ

and geometric averaging ensures both measures are incorporated
into a single measure of technological change. Constraining the
technology by assuming a particular functional form, for example
Cobb–Douglas exhibiting Hicks-neutral technical change, can
eliminate the dependence but only at the expense of imposing
arbitrary functional restrictions.

5 The problem of index path dependence is well-known. Kumar
and Russell (2002) provide a nice synopsis while Chambers and
Pieralli (2020) provide further details for the decomposition
method used in this paper. We take an agnostic approach in that
our averaging procedure considers all possible paths that are avail-
able for the cross-period comparison.
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withnon-increasing returns to scale. Formally, this
is done by taking an observed set of data on
observed inputs and outputs, constructing the
convex hull of the observed data, and then impos-
ing “disposability properties” on that convex hull
that are associated with the traditional notions of
non-negative marginal returns, positive marginal
costs, and non-increasing returns.

The data (described below) thatwe use to con-
struct theempirical approximation to the technol-
ogy consist of observations on aggregate output,
aggregate input, and twomeasured weather vari-
ates for thirty-two Australian production regions
for 1978 to 2013. Letting (ytk, xtk, wtk) denote the
observed values of aggregate output, aggregate
input, and the two-vector of observed weather
variates for regionk at period t, theDEAapprox-
imation to the aggregate production function at
period t for input bundle (x, w) is

This DEA approximation to the produc-
tion function for a given (x, w) input vector
is calculated as a linear program that chooses
mixture terms (λjk, j = 1,…, t, k = 1,…, 32) to
ensure that the aggregate output associated
with (x, w) lies on the frontier of the “best
attainable” technology. The task of the mix-
ture terms is to select the combination of
observed input and output variates that form
the empirical approximation to the empirical
frontier in the neighborhood of (x, w). Math-
ematically, the task of the inequality sign
associated with the x constraint is to impose
free disposability of x while the equality
associated with the w constraints imposes
weak disposability. This specification also
satisfies Diewert’s (1980) “sequential pro-
duction set formulation” that ensures that
technical know-how for a given set of inputs
(including weather, climate conditions, etc.)
does not degrade. A more thorough discus-
sion of the method used to construct the
DEA approximation to ft(x, w) is available
in Chambers and Pieralli (2020) and in
online supplementary appendix A.

The Data

The data used are aggregate input, aggregate
output, and weather variates measured for
thirty-two regions (from three different produc-
tion zones) in Australian broadacre agriculture
between 1978 and 2013.6 The region-level data
for aggregate input and aggregate output, con-
structed using standard productivity account-
ing practices, were obtained from Australian
official sources (ABARES 2018).7 Our weather
variates are a soil-moisture index and a growing
degree-day (GDD)measure. Total precipitation
and average temperature for growing seasons
are often used to represent weather-related
effects. But they do not capture the role that
moisture and temperature play in affecting plant
and animal growth for different agro-ecological
systems because air pressure, evaporation, run-

off, soil attributes, heat accumulation, and other
factors determine moisture delivered to the
plant. The soil-moisture index and the GDD
measure are preferred on this basis. We empha-
size, however, that these variates only measure
naturally occurring (beyond direct producer
control) inputs. Alone, they do not measure

ft x,wð Þ=max

Xt

j = 1

X32
k= 1

λjkyjk :w=
Xt

j = 1

X32
k= 1

λjkwjk,x≥
Xt

j = 1

X32
k= 1

λjkxjk,

1≥
Xt

j = 1

X32
k= 1

λjk,λjk ≥ 0, j = 1,…, t

8>>>><
>>>>:

9>>>>=
>>>>;
:ð12Þ

6 A reviewer raises the important question of whether it is legiti-
mate to use a common technology as representative of all three pro-
duction (climatic) zones. The standard practice in productivity
accounting is to define the technology as “all possible input and out-
put combinations that are technically feasible.”Thus, in principle, the
technology is actually themetafrontier of all potentially available pro-
duction frontiers in the Salter (1960) sense so that all observations
should share a common frontier. This is true whether comparisons
aredone at the individual, village, regional, state, national, or interna-
tional levels. Thus, in the body of the text we only report results gen-
erated from themetafrontier approach. Nevertheless, as a robustness
check, we also performed the analysis using approximations of the
metafrontier that were generated for each of the three production
zones. These results are discussed and summarized briefly in online
supplementary appendix B. They support the robustness of the
results reported in the body of the paper.

7 Sheng, Yang, and Zhao (2018) and ABARES (2018) contain
a detailed discussion of the procedures used in calculating these
TFPmeasures, and the aggregate inputs and outputs. In particular,
they account for the differences in land quality across regions and
their changes over time by using a hedonic approach when they
estimate the land input.
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the frequency or severity of droughts. That
requires an intertemporal analysis of the evolu-
tion of moisture and GDD variates over time.8

The soil-moisture index was obtained from
the Australian Water Availability Project
(AWAP). That project uses model-data fusion
methods that combine measurements and
model predictions (Raupach et al. 2005a;
Raupach et al. 2005b; Raupach et al. 2006;
Trudinger et al. 2007; Trudinger et al. 2008)
into a single soil-moisture index. The index
ranges from −4 to +4, with −4 indicating
extremely dry and +4 indicating extremely
wet. It accounts for both historical and present
soil moisture and water fluxes. The index is
spatially and transtemporally comparable so
that it can be used across different climatic
zones (humid or arid). It is available for the
entire Australian continent at a spatial resolu-
tion of 5 square km.
The growing season degree-day measure

was calculated following the procedures used
in Schlenker, Hanemann, and Fisher (2005)
and Deschênes and Greenstone (2007). A
base and a ceiling for daily average tempera-
ture determine the temperature thresholds.
Specifically, a day with a mean temperature
below 8�C contributes 0 degree days; a day
with mean temperature between 8 and 32�C
contributes the difference between mean tem-
perature and 8 degree days (for example, a
day with a mean of 15 contributes 7 degree
days); a day with mean temperature above 32
degrees contributes 24 degree days. The grow-
ing season degree-day measure is calculated
by adding the daily measures over two crop-
ping windows: one period from 1st April to
31st October for the “winter season” and one
period from 1st November to 31st March for
the “summer season.”

Both weather variates were calculated at
the farm level (based on the Australian Agri-
cultural and Grazing Industry Survey sample)
by matching the location of 2,023 weather sta-
tions (or the map for soil moisture) with each
farm. A weighted average of these measures
for all farms falling inside each region is then
used to compute the region-level measure with
weights determined by sowing areas. Regional
level weather measures are first calculated on
a monthly base for the thirty-two regions
between 1978 and 2013, and then aggregated
using the two cropping windows defined
above. The cropping/pasture areas for each
growing season are used as weights.

Table 1 presents descriptive statistics on the
empirical distribution of both measured
weather variates. Figures 3 and 4 depict the
resulting smoothed kernel densities of the
weather variates for the 1979–93 and 1999–
2013 periods. The Millennium-Droughts
period brought both hotter and drier condi-
tions. The average number of GDD increased
between the periods. As figure 3(a) illustrates,
the soil-moisture distribution shifted slightly
to the left and became more leptokurtic. This
reflects a movement toward slightly drier
average conditions that are more tightly con-
centrated around the mean. Figures 3(b) and
3(c) overlay the smoothed kernel densities
for each subperiod over histograms color
coded (or dot-line framed) to discriminate
mass located in each of the three zones
(High-Rainfall, Wheat-Sheep, and Pastoral).
Both panels demonstrate that the bulk of the
mass for low-moisture levels falls in the Pasto-
ral zone, the bulk of the mass for average
moisture in the Wheat-Sheep zone, and the
bulk of the mass for above average moisture
in the High-Rainfall zone.

Figure 4(a) shows that the degree-day distri-
bution shifted to the right and becamemore pla-
tykurtic in the Millennium-Droughts period.

Table 1. Descriptive Statistics on TFP Index, Soil Moisture Index, and Growing Season Degree
Days: 1979–93 versus 1999–2013

TFP index Soil moisture index Growing-season degree days

Mean/std Skew/Kurt test Mean/std Skew/Kurt test Mean/std Skew/Kurt test

1979–93 1.047 16.100 0.227 23.460 4392.585 33.230
(0.380) (0.000) (0.089) (0.000) (1043.092) (0.000)

1999–2013 1.377 21.410 0.227 27.830 4434.941 33.380
(0.516) (0.000) (0.087) (0.000) (1031.328) (0.000)

Note:The skewness/kurtosis test for normality has been conducted using themethod proposed byD’Agostino, Belanger, andD’Agostino Jr. (1990) andRoyston
(1991). Numbers in the parentheses below “Mean/std” are standard deviations while numbers in parenthesis below “Skewness/Kurtosis” test are p values.

8 We thank an anonymous reviewer for emphasizing this point.
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That pattern suggests a move toward warmer
but more variable temperatures. Both the
1979–93 and 1999–2013 degree-day distributions

give evidence of trimodality with mass concen-
trated near 4000 GDD, 5000 GDD, and 6500
GDD. As figures 4(b) and 4(c) demonstrate,

Figure 3. Smoothed kernel densities of Australian soil moisture in 1979–93 and 1999–2013 and
histograms by climate zone. (a) Smoothed kernel densities of soil moisture index in 1979–93 and
1999–2013. (b) Smoothed kernel density of soil moisture and histograms by climate zone: 1979–
93. (c) Smoothed kernel density of soil moisture and histograms by climate zone: 1999–2013
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the trimodality closely parallels the different cli-
matic zones.High-Rainfall areas exhibit the few-
est growing season degree days, Wheat-Sheep

areas intermediate levels, and the Pastoral zone
accounts for the highest observed growing sea-
son degree days.

Figure 4. Smoothed kernel densities of Australian growing degree days in 1979–93 and 1999–
2013 and histograms by climate zone. (a) Smoothed kernel densities of growing season degree
days in 1979–93 and 1999–2013. (b) Smoothed kernel density of the growing season degree days
and histograms by zone: 1979–93. (c) Smoothed kernel density of the growing season degree
days and histograms by zone: 1999–2013
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Empirical Results

Diffusion of Technology

Schultz (1947) argued that agricultural pro-
duction could be both technically and alloca-
tively inefficient. Griliches (1963) echoed
these arguments in trying to explain observed
patterns of US agricultural productivity
growth. An oft-cited culprit was the relatively
slow diffusion of agricultural technologies
across and within regions (Griliches 1960;
Gardner 2002; Mundlak 2005). For example,
Griliches (1960) estimated that Iowan farmers
had increased their hybrid-corn acreage any-
where from 10% to 90% more quickly than
Alabaman farmers. We can examine the pat-
tern of diffusion of agricultural technologies
by seeing where different production units
produce relative to the best attainable frontier.
If diffusion of the technology is rapid and
widespread, production units should be con-
centrated near the best attainable frontier. If
diffusion is slow, significant concentrations of
production units away from the frontier are
to be expected.

In figure 5, we plot smoothed kernel densi-
ties for measured efficiency scores, yt

f t xt ,wtð Þ ,
for the pre-Millennium-Droughts (PMD)
period, 1979–93, and for the Millennium-
Droughts (MD) period, 1999–2013. The rele-
vant efficiency scores were derived from our
empirical approximation to the “best attain-
able” technology. For the PMD period, the
efficiency distribution appears bimodal with a
mean of approximately 0.72. Mass is concen-
trated slightly below the mean and in the
neighborhood of one. This suggests that pro-
ductive regions fell into two groups during that

time period. One, those in the neighborhood
of one, operated relatively close to the frontier
and maintained pace with the evolving techni-
cal frontier. Another lagged behind the mov-
ing frontier and benefited less from available
technological developments.
The smoothed kernel densities for the MD

period exhibit more mass concentrated in the
lower end of the efficiency distribution and
give evidence of trimodality. Average effi-
ciency has clearly fallen. This suggests that
with the appearance of the Millennium
Droughts, diffusion and adoption of techno-
logical improvements both slowed and
became more disparate across regions. Some
mass is still concentrated in the neighborhood
of one but clearly less than in the PMD period.
What has emerged in its place is a group of
intermediate laggards, with efficiency perfor-
mance above the average but still falling away
from the frontier. Instead of catching up with
technological advances, this intermediate
group appears to be falling behind.
Figure 6 provides another perspective on

the nature of the change in the efficiency-score
distribution between the two subperiods. The
two panels there overlay the smoothed kernel
densities with histograms color coded (or dot-
line framed) according to climatic zones. In
the PMD period, as illustrated by figure 6(a),
a large percentage of the mass concentrated
near one is associated with the High-Rainfall
zone, followed by the Wheat-Sheep zone,
and the Pastoral zone, respectively. The mid
range of the distribution is dominated by
High-Rainfall regions, while the lower tail of
the distribution is dominated by Pastoral
regions. Figure 6(b) shows that the trimodality
observed in theMD period is associated with a

Figure 5. Smoothed kernel densities of technical efficiency between 1979–93 and 1999–2013
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number of High-Rainfall regions falling away
from the “best attainable” frontier, while
increasing numbers of regions in the Wheat-
Sheep zone move into the neighborhood of
one. The concentration of Pastoral regions in
the neighborhood of one appears relatively
unchanged, although Pastoral-zone scores are
more concentrated in the lower half of the effi-
ciency distribution. Moreover, the mass of
High-Rainfall farmers falling in the lower tail
of the efficiency distribution appears to have
increased dramatically.
The story that emerges is that High-Rainfall

zone farmers were less adaptable and did not
maintain pace with the evolving best-practice
technology during the MD period. There are
varying explanations. One is that the input mix
used in the High-Rainfall regions became less
productive with lower moisture levels, while
those for Wheat-Sheep regions improved, and
Pastoral regions remain relatively unchanged.

This, of course, is a story about adaptation to
changing climatic conditions. It is well-docu-
mented, for example, that as US farmers moved
westward and encountered changing climatic
conditions, the process of adjusting to those
changing conditions involved time-consuming
experimentation with different varieties and
input mixtures (Olmstead and Rhode 2011). In
the Australian context, farmers encountered
changing climatic conditions not as a result of
geographic expansion, but because of changes
in the severity and frequency of drought
conditions.

The hypothesis that “adaptation to the fron-
tier” depends upon climatic conditions war-
rants scrutiny. To that end, we examined the
correlation between observed efficiency levels
and the two weather variates for the two
periods using bias-corrected regression tech-
niques. These methods correct for the bounded
[0, 1] nature of the support of the

Figure 6. Smoothed kernel densities of technical efficiency scores in 1979–93 and 1999–2013, and
histograms by climate zone. (a) Smoothed kernel density of efficiency scores and histograms by
climate zone, 1979–93. (b) Smoothed kernel density of efficiency scores and histograms by
climate zone, 1999–2013
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nonparametric efficiency scores (Kneip, Simar,
and Wilson 2015). Three separate regressions
were estimated: one for the entire sample
period, 1979–2013, one for the PMD period,
and one for the MD period. The results are
reported in table 2. Estimated coefficients are
uniformly significant at usual levels of confi-
dence and broadly similar across the three spec-
ifications. These results should not be
interpreted causally, but they do support the
existence of a significant correlative relation-
ship between the weather variates and adapta-
tion to the frontier that seems stable across
the different time periods. The results also sug-
gest thatmeasured efficiency is positively corre-
lated with the soil-moisture variate and
negatively correlated with the degree-day mea-
sure. Regions with higher soil-moisture and
fewer degree days tend to operate closer to
the “best attainable” frontier than regions with
drier and hotter conditions. Similar results have
been reported by others (Mendelsohn,

Nordhaus, and Shaw 1994; Schlenker andRob-
erts 2009; Ortiz-Bobea, Knippenberg, and
Chambers 2018; Chambers and Pieralli 2020).

Productivity Growth and its Components

We now examine annual productivity-
growth performance in the PMD period
and in the MD period. We calculated annual
TFP change (lnTFP(t, t − 1)), technological
change (ΔTt, t − 1), weather change (ΔWt, t − 1),
input change (ΔXt, t − 1), and efficiency change
(ΔEt, t − 1) for each of the thirty-two regions
over the 1978–2013 period.
Figure 7 compares smoothed kernel density

estimates of annual TFP change for 1979–93
and 1999–2013. Visually, the MD period
exhibited a pattern of slower average produc-
tivity growth with more mass concentrated in
its lower tail. This suggests that the upper sup-
port of the TFP distribution shifted to the left.

Table 2. Bias-Corrected Regression: Efficiency Scores Related to Weather Variates

1979–2013 1979–93 1999–2013

Dependent variable: Technical efficiency level
Soil moisture index 0.579*** 0.511*** 0.674***

(0.090) (0.136) (0.120)
Growing season degree days (log) −0.521*** −0.476*** −0.518***

(0.033) (0.053) (0.043)
Constant 4.857*** 4.531*** 4.782***

(0.281) (0.452) (0.364)
Sigma 0.170*** 0.158*** 0.172***

(0.005) (0.007) (0.007)
Number of observations 960 480 480
R-squared 0.238 0.209 0.184

Note: The bias-corrected regression refers to the routine in Kneip, Simar, and Wilson (2015). ***, ** and * denote significance at 1%, 5% and 10% level.

Figure 7. Smoothed kernel densities of annual TFP growth in 1979–93 and 1999–2013
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The MD distribution gives some evidence of
bimodality. To augment the visual evidence,
we have employed a nonparametric procedure
due toCombes et al. (2012) that permits discrim-
ination between three types of changes when
comparing distributions: a mean or common
shift, a dilation, and a support change.9

Table 3 reports the results from applying
the Combes et al. (2012) procedure to the dis-
tributions of lnTFP(t, t − 1), ΔTt,t − 1, ΔWt,t − 1,
ΔXt,t − 1, and ΔEt,t − 1 for the PMD and MD
subperiods. The first column refers specifically
to lnTFP(t, t − 1). The way to read each of the
entries is that a positive (negative) estimate for
themean-shift parameter indicates a shift to the
right (left) for theMD subperiod relative to the
PMD subperiod, an estimate greater (less) than
one for the dilation parameter indicates a more
platykurtic (leptokurtic) distribution, a positive
(negative) estimate for either a left or right sup-
port parameter means that the support has
shifted toward the mean (away from mean).
The reported R2 indicates how closely the
MD subperiod distribution fitted using the
Combes et al. (2012) procedure approxi-
mates the observed distribution.
The statistical evidence reported in the first

column of table 3 confirms the visual evidence
on relative TFP performance. The estimated
parameters for the mean shift, dilation, and
upper support are all significant at the 0.05
level. The negative estimate for the mean shift
indicates that average TFP growth was slower
in the MD period than in the earlier period.
The dilation parameter, which is greater than
one, indicates greater variability in TFP per-
formance as the Millennium Droughts hit.

The positive parameter for the right support
term indicates a leftward shift toward the
mean. Thus, not only did average productivity
growth slow, but some previously observed,
high productivity growth patterns seem to
have disappeared with the appearance of the
Millennium Droughts.

Figure 8 depicts smoothed kernel density esti-
mates for ΔT for the 1979–93 and 1999–2013
periods. Comparing the two distributions, the
visual evidence suggests that a unimodal distri-
bution of the PMD period was replaced by one
containing evidence of bimodality. The latter
bimodality appears to comprise a mass of
regions concentrated very close to zero or little
to no average technological improvement) and
another (far smaller) mass of regions concen-
trated above the mean of the distribution. This
pattern is evocative of what Quah (1996, 1997)
has referred to as a “twin-peaks” phenomenon
and suggests a divergence across regions in the
rate of technological change. Some regions
were continuing to innovate, while a larger
group failed to innovate. The visual evidence
also suggests that the upper support of the ΔT
distribution appears to have shifted to the left
suggesting a slowing rate of technological
change for the most rapidly improving regions.

The appearance of the bimodal pattern in
the ΔT distribution for the MD period
deserves closer examination. In figure 9, we
portray the smoothed kernel densities of ΔT
overlaid with histograms color coded (or dot-
line framed) according to climatic zones. The
different panels show that the bimodal shape
arises from Wheat-Sheep regions becoming
more innovative. The leftward shift in the
upper support of the ΔT distribution is associ-
ated with High-Rainfall regions exhibiting
slower rates of ΔT (technological innovation).

Table 3. Kernel Analysis on TFPGrowth and its Components between 1979–93 and 1999–2013

TFP growth
change

Technological
progress

Input/scale
adjustment

Efficiency
change

Weather
change

A (common
shift)

−0.014** 0.204*** −0.001*** −0.007*** 0.002
(0.007) (0.041) (0.000) (0.002) (0.002)

D (dilation
effects)

1.093*** 5.660*** 0.722 1.184*** 0.541***
(0.045) (1.002) (0.254) (0.042) (0.165)

S_left (left tail
cut)

0.006 0.027 0.007 0.006 −0.082
(0.007) (0.069) (0.031) (0.005) (0.051)

S_right (right
tail cut)

0.001*** 0.450*** −0.014 −0.003 0.037
(0.000) (0.039) (0.030) (0.004) (0.048)

R-squared 0.792 0.998 0.967 0.871 0.816

Note:We conducted the kernel analysis following Combes et al. (2012). *, **, *** indicate statistical significance at the 10%, 5%, and 1% level. The total number
of observations used in this exercise is 960 (480 × 2).

9 Technical details on the procedure are provided in an online
supplementary appendix C.
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Applying the Combes et al. (2012) decom-
position analysis to the ΔT distributions
(please see second column of table 3), we find

significant statistical support for a rightward
mean shift in the distribution, a large dilation
of the distribution, and a leftward shift in the

Figure 8. Smoothed kernel densities of technological change in 1979–93 and 1999–2013

Figure 9. Smoothed kernel densities of technological change and histograms by zones in 1979–93
and 1999–2013. (a) Smoothed kernel density of technological change and histograms by zone,
1979–93. (b) Smoothed kernel density of technological change and histograms by zone,
1999–2013
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upper support of the distribution. This sug-
gests that growing interregional technological
divergence accompanied the Millennium
Droughts. High-Rainfall regions, which are
dependent upon adequate moisture and mod-
erate temperature, seemingly faltered in mak-
ing technological innovations.
Both the ΔX and the ΔE distributions

shifted leftwards with the onset of the Millen-
nium Droughts. Both mean shift parameters
reported in table 3 are negative and statisti-
cally significant at traditional confidence
levels. As evidenced by the significant dilation
factor reported in table 3, the ΔE distribution
also became more platykurtic contributing to
the observed increased variability in TFP
growth between the two periods.
The final component of the decomposition is

ΔW. Figure 10 presents its smoothed kernel
densities for both periods. Both distributions
are concentrated around a mean of zero. Thus,
there is little evidence that the pattern of mea-
sured weather effects changed with the coming
of theMillennium Droughts. On average, good
years were roughly balanced by bad years in
both periods so that mean effects were near
zero. What is interesting, however, from the
visual evidence in figure 10 is that the mass of
observations concentrated in the neighborhood
of zero has increased significantly between the
two periods (the peak of the PMD distribution
is lower than the peak of theMDone). The sta-
tistical evidence reported in table 3, with an
estimated dilation parameter of 0.5, confirms
the visual evidence of a more leptokurtic
distribution.
Given the reported evidence (for example,

Hughes, Lawson, and Valle 2017) that the

Millennium Droughts caused large output
losses, some may find a mean-zero ΔW effect
in both periods counterintuitive. Intuition might
suggest, instead, that the evidence would sup-
port a negative mean ΔW in the MD period.
One should remember, however, how annually
measured TFP responds to extreme weather
events. When an extreme weather event occurs,
annually measured TFP falls precipitously
reflecting the sharp output drop relative to a sta-
ble input base. If weather returns to normal the
following year, measured TFP rises dramatically
as output “snaps back” to its normal level. The
associated two-year average of ΔW should be
about zero, even though a large output loss
was encountered. In fact, if the input base were
stable across the two periods the associated
averagemeasured rate of change would be pos-
itive. This happens because the fall in TFP per-
centage is measured against a higher output
base than the following rise in TFP. Increas-
ingly frequent drought conditions increase the
frequency of these two-year, mean-zero events
without changing the overall mean. They do,
however, result in increased variability of mea-
sured TFP change.

The overall picture that emerges is slower
and more variable TFP growth in the MD
period. Importantly, the slowdown in average
TFP growth is not associated with a slowing
average rate of ΔT. In fact, the statistical anal-
ysis suggests that average ΔT rises in the MD
period. The rightmost mode of the observed
bimodal MD ΔT distribution contains suffi-
cient mass to increase meanΔT. But the lower
average and more dispersed efficiency scores
in the MD period suggest the diffusion of
those technological advances slowed. At the

Figure 10. Smoothed kernel densities of weather change in 1979–93 and 1999–2013
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same time that average ΔT increased, the
upper tail of the empirical support of the ΔT
shifted to the left. Fewer regions were making
“extreme” technological improvements in
the latter period. The evidence also suggests
that the slowdown in TFP performance, the
slowing technological diffusion, and the left-
ward shift upper support for the ΔT distribu-
tion are all associated with High-Rainfall
regions falling away from the technological
frontier. Regions in the Wheat-Sheep zones,
however, seemed to have moved closer to it
suggesting that their agricultural practices are
most robust to extreme weather conditions.

A takeaway message, therefore, is that the
sluggish TFP growth after 2000 does not result
from technological failures. Instead, it seems
more reflective of a slower and noisier process
of diffusing technological advances. Two pieces
of information are particularly noteworthy.
The first is the confirmed link between extreme
weather conditions and technology diffusion
manifested by the bias-corrected regression
analysis relating efficiency scores and the
weather variates. The second is the visual evi-
dence indicating cross-zone differences in how
regions adapt to the frontier. During the PMD
period, High-Rainfall regions were massed in
the neighborhood of the technological frontier.
They also often exhibited very high rates of
productivity growth. Things changed in the
MD period. Much of the failure to adapt to
the evolving frontier was concentrated in the
High-Rainfall zone. That zone has an agricul-
tural infrastructure that was predicated on ade-
quate moisture and moderate temperatures.
Regions in such a zone necessarily will struggle
with a short-term drought. This is expected and
is one natural explanation for why measured
agricultural TFP growth is periodically very
negative. But when drought conditions become
more the norm and not the exception, once-
ideal input mixtures will need to adjust to more
challenging environment. This is exactly what
was required of American wheat farmers as
they proceeded across the Western Plains
(Olmstead and Rhode 2011). The evidence
suggests that this process of adjustment and
adaptation remains ongoing in the High-Rain-
fall zone.

Concluding Remarks

It is well known that yields and profitability
are sensitive to extreme weather events

(Schlenker, Hanemann, and Fisher 2005;
Deschênes and Greenstone 2007; Schlenker
and Roberts 2009; Tack, Barkley, and Nalley
2015). Less is known about how extreme
weather impinges upon agriculture’s sectoral
performance. Evidence is scant, but what does
exist suggests that climatic effects can be
important (Liang et al. 2017; Ortiz-Bobea,
Knippenberg, and Chambers 2018). We also
know that developed-country annual agricul-
tural productivity growth slumped dramati-
cally around 2000 (Thirtle et al. 2004; Alston,
Babcock, and Pardey 2010; Sheng, Mullen,
and Zhao 2010; Alston, Andersen, and Pardey
2015; Sheng et al. 2020). The potential connec-
tion between the observed productivity
growth slowdown and ongoing climate change
begs to be examined, and Australian agricul-
ture offers a natural laboratory.
We used a synthesis of different methods to

investigate the interaction between climatic fac-
tors andAustralian agriculture productivity. To
incorporate and isolate weather’s impact upon
measured productivity performance, we modi-
fied Chambers and Pieralli’s (2020) method
for incorporating climate variates into a yearly
productivity setting. Those results allowed us
to decompose annual measured productivity
growth into four separate components: techno-
logical change, input-scale adjustment, diffu-
sion effects, and weather effects. We did this
for thirty-two distinct production regions (in
three different productions zones) for 1979–
2013. These results were then partitioned into
two subperiods, the PMD and the MD periods.
We determined the subperiods using two cri-
teria. First, we took the first period to end
immediately prior to the first commonly
acknowledged Millennium Drought. The start-
ing point for the MD period was chosen to
ensure that both periods had the same number
of observations.10 After the decompositions
and partitioning were effected, we used non-
parametric statistical analysis involving both
estimation of smoothed kernel densities and
kernel-analysis procedures due to Combes
et al. (2012). These techniques can describe
the behavior of various components of TFP
change and can detect statistically discernible
evidence of change in that behavior between

10 Both the productivity comparisons and partitioning proce-
dure used are distinct from those pursued in Chambers and Pieralli
(2020). Their productivity change calculations were not annual but
covered a thirty-year period, and their partitioning was chosen to
treat the pre-PIK and post-PIK periods for the United States
symmetrically.
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the two subperiods. They cannot assess the
causal nature of any such changes. That
remains beyond the scope of our analysis.
The empirical results suggest that the slow-

down in observed MD-period productivity
growth is not statistically associated with a
slowdown in average rate of technological
change. Instead, weather-induced differences
in patterns of technological diffusion, which
are particularly concentrated in the High-
Rainfall regions, seem to have played a more
prominent role. In the PMD period, the
High-Rainfall regions routinely developed
and rapidly adopted technological improve-
ments. But in the MD period, the pattern of
their efficiency scores indicates that they strug-
gled to incorporate technological advances
into their production practices. They also
exhibited lower rates of ΔT. This slowing of
technological innovation and diffusion proved
an important brake on their observed produc-
tivity performance. Whether it is a harbinger
of a continued deterioration or reflective of
needed further adjustments to changed climatic
conditions is an open question needing further
research. But it is of particular interest to note
that Ortiz-Bobea, Knippenberg, andChambers
(2018) have recently reported similar results
indicating that rain-fedUSMidwestern agricul-
ture’s TFP performance is peculiarly sensitive
to climate conditions.

Supplementary Material

Supplementary material are available at
American Journal of Agricultural Economics
online.
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