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Abstract

This article examines how expected changes in climate are likely to affect agriculture in China. The effects of temperature and precipitation on net
crop revenues are analyzed using cross-sectional data consisting of both rainfed and irrigated farms. Based on survey data from 8,405 households
across 28 provinces, the results suggest that global warming is likely to be harmful to rainfed farms but beneficial to irrigated farms. The net
impacts will be only mildly harmful at first, but the damages will grow over time. The impacts also vary by region. Farms in the Southeast will
only be mildly affected but farms in the Northeast and Northwest will bear the largest damages. However, the study does not capture the indirect
effects on farms of possible changes in water flow, which may be important in China.
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1. Introduction

As scientific evidence becomes more convincing that increas-
ing greenhouse gases will warm the planet (IPCC, 2007a), it
has become ever more important to understand the impacts of
global warming. The impacts to the agriculture sector from
climate change are among the largest and best documented.
Agronomic studies suggest that crop yields may fall if the
same crops are grown in the same places under various climate
change scenarios (IPCC, 2007b). Even with adaptation, studies
applying the Ricardian approach in Africa (Kurukulasuriya and
Mendelsohn, 2008; Kurukulasuriya et al., 2006) and South
America (Seo and Mendelsohn, 2008) suggest that warming
will reduce farm net revenues. Further, climate change will
have different impacts on different countries.

Many agronomic modeling studies have assessed the impacts
of climate change on several grain crops (e.g., rice, maize, and
wheat) in various regions of China. The general findings of
these studies are that crop yields will fall in China like those
in other developing countries (e.g., Matthews and Wassmann,
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2003; Parry et al., 2004; Tao et al., 2006; Wu et al., 2006;
Xiong et al., 2007; Yao et al., 2007). These and other agronomic
studies have the same caveat in that they assume that the same
crops are grown in the same places as climate changes. Further,
agronomic studies in China do not include any economic values
attached to the estimated yield reductions. And, there are no
agroeconomic models (such as Adams et al., 1995) that convert
crop-modeling results into economic outcomes for China.

The only economic study in China to date of the effect of
warming on agriculture is a Ricardian analysis (Liu et al., 2004).
Curiously, this study finds that warming will increase average
farm net revenue, not reduce it. However, this Ricardian study
is based on county-level data with potentially severe data limi-
tations. Therefore, it is difficult to weigh the results of this study
and compare them to the results of the other agronomic studies
that suggest that warming is harmful. In short, there is simply
not sufficient evidence to know how global warming will affect
Chinese agriculture.

To help answer this question, this article reports the results
of a new study that measures the sensitivity of Chinese agricul-
ture to warming, employing farm-level data. Like the Liu et al.
(2004) study, the analysis in this article relies on the Ricardian
method (Mendelsohn et al., 1994). The analysis is conducted
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on 8,405 farms sampled across 28 provinces. The data include
information on each farm’s economic operations and other
farm/household characteristics. Matching the location of each
household to climate data (rainfall and temperature) and soils,
it is possible to examine the effect of climate on net revenue
controlling for many other factors. By regressing net revenue
per hectare on climate and a number of other exogenous con-
trol variables, we estimate the sensitivity of current Chinese
farms to climate. The econometric results allow us to estimate
the direct effects of temperature and precipitation on crop net
revenues. Further, the results are combined with future climate
scenarios to predict how future changes in climate might affect
farmers.

Unfortunately, the amount of irrigation water a farmer uses
is not available in the data set. Although for many farms we
know whether a farm is irrigated or not, we do not know water
availability or the cost of water. If future climate scenarios re-
duce available water supplies, this is likely to have an important
harmful effect on China’s agriculture that this study does not
take into account. Future studies should address the indirect
effect of climate change on crop net revenues. Future studies
should also try to predict how China’s farms might change over
time with new technology and capital.

2. Methodology

The Ricardian approach (Mendelsohn et al., 1994) is the
primary method that we use in the analysis in this article. The
Ricardian model assumes that each farmer wishes to maximize
income, subject to the exogenous conditions of his or her farm.
Specifically, the farmer chooses the crop and inputs for each
unit of land that maximizes:

Max π =
∑

i

Pqi
Qi(Xi, Li,Ki, IRi, C,W, S) −

∑

i

PxXi

−
∑

i

PLLi −
∑

i

PKKi −
∑

i

PIRIRi,
(1)

where π is net annual income, Pqi is the market price of crop i,
Qi is a production function for crop i, Xi is a vector of annual
inputs such as seeds, fertilizer, and pesticides for each crop i,
Li is a vector of labor (hired and household) for each crop i, Ki

is a vector of capital such as tractors and harvesting equipment
for each crop i, C is a vector of climate variables, IRi is a vector
of irrigation choices for each crop i, W is available water for
irrigation, S is a vector of soil characteristics, Px is a vector of
prices for the annual inputs, PL is a vector of prices for each
type of labor, PK is the rental price of capital, and PIR is the
annual cost of each type of irrigation system.

If the farmer chooses the crop that provides the highest net
income and chooses each endogenous input in order to maxi-
mize net income, the resulting net income will be a function of
just the exogenous variables:

π∗ = f (Pq, C,W, S, PX, PL, PK, PIR). (2)

With perfect competition for land, free entry and exit will
ensure that excess profits are driven to zero. As a consequence,
land rents will be equal to net income per hectare (Mendelsohn
et al., 1994; Ricardo, 1817).

The Ricardian function is intended to be a locus of the most
profitable crops with respect to each exogenous variable such
as temperature. The net income function does not include less
profitable alternatives. It consequently does not look like the
response function for any single crop but rather as the envelope
of all choices. For example, at cool temperatures, farmers would
choose to grow wheat (Triticum aestivum L.). As temperatures
rise, farmers would no longer want to grow wheat because it
would become less profitable. They instead would shift to maize
(Zea mays L.). As temperatures increase further, they might
want to shift to fruit (Panicum miliaceum) or vegetables that are
more heat tolerant. The Ricardian function, Eq. (2), captures the
locus of maximum profits for each temperature or precipitation
level. It is estimated across crops and across inputs, revealing the
net effect of changing the exogenous variable. Because farmers
are assumed to make adaptations that are profitable, the method
automatically captures the adaptation inherent in the market
(Mendelsohn et al., 1994).

The Ricardian model was developed to explain the varia-
tion in land value per hectare of cropland over climate zones
(Mendelsohn et al., 1994). In repeated studies in the United
States, Brazil, Sri Lanka, and South America, the land value
per hectare of cropland has been found to be sensitive to sea-
sonal precipitation and temperature (Mendelsohn and Dinar,
1999, 2003; Seo and Mendelsohn, 2008; Seo et al., 2005). In
some countries, land markets do not function and thus there
are no land values. Instead, net revenue per unit of land is
calculated. Similar results have also been found for crop net
revenue in India, Africa, South America, and Israel (Fleis-
cher et al., 2008; Kurukulasuirya et al., 2006; Mendelsohn and
Dinar, 1999; Seo and Mendelsohn, 2008). Because the response
is nonlinear, a quadratic functional form has been used in most
Ricardian studies.

Note that the Ricardian model does not take into account
price changes (Cline, 1996) and thus will overestimate welfare
effects. However, the prices of crops are determined globally,
not locally, so the key is the effect of climate on global produc-
tion. With the expansion of crop production in some parts of
the world and the contraction in others, the changes in the price
of crops from global warming is expected to be small (IPCC,
2007b). Also, the Ricardian analysis does not take into account
the cost of transition (Kelly et al., 2005). The analysis is mea-
suring long-term equilibrium effects, not short-run transition
costs.

3. Data and model specifications

The climate data (monthly temperature and precipitation)
were gathered from the National Meteorological Information
Center in China. The data are based on actual measurements in
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753 national meteorological stations that are located throughout
China. The temperature and precipitation data were collected
from 1951 to 2001. We rely on the mean values of these vari-
ables (climate normal) over this period for each month. The
climate for each county is assumed to be the value measured by
that county’s meteorological station.

Because of the high correlation in the climate data from
month to month, it is not possible to include every month in
the econometric analysis. Consequently, the monthly data are
averaged into four seasons. Winter is the average of December
to February; spring is the average of March to May; summer
is the average of June to August; and fall is the average of
September to November.

The socioeconomic data that are used in the study come from
China’s National Bureau of Statistics (CNBS). The data were
collected by a highly trained, professional enumeration staff
in 2001 as part of the annual, nationwide Household Income
and Expenditure Survey (HIES).1 The data cover 45,700 farm
households in 4,365 villages, 533 counties, and 31 provinces.

During the survey enumerators from CNBS collected a rich
set of information at both the village and the household levels.
Most importantly the data provide us with a relatively high-
quality measure for the dependent variable, net crop revenue for
each household. Net crop revenue is gross crop revenue (or total
sales for each crop) less than all expenditures for production,
including expenditures on seed, fertilizer, irrigation, pesticide,
machinery, plastic sheeting, hired labor, and custom services.
All of the output that was consumed by each household was
given a value based on a price of the output as if it was sold
on the market. Neither family labor nor a household’s rent for
contracted land is counted as a cost. Therefore, net revenue is a
measure of returns to land and family labor. Based on the total
cultivated land area of each household (measured in hectares),
we can calculate net crop revenue per hectare.

The data set also includes a number of other household and
village characteristics. These variables are important from a
theoretical point of view since they can give us measures of fixed
factors that belong in Ricardian regressions. Using the data, we
are able to construct variables that measure the education level
of members of the farm household, each family’s land area, a
number of indicators about the topographical environment of
each village (e.g., if it is located on a plain or in a mountainous
region), each household’s irrigation status (measured as the
share of area that is irrigated in the village) and the ease of
access to markets (e.g., the presence of paved roads between
the village and key services; the distance to each township’s
main government office). Such variables are used as control
variables in the regressions. Descriptive statistics of the key
variables are shown in Table 1. The table provides key data
about the entire sample as well as three important subsamples:
farms from villages that are irrigated, farms from villages that

1 2001 is reasonably representative. The crop yield, net revenue per hectare,
and crop marketing price for three major crops (wheat, maize, and rice) in 2001
are consistent with the values in China from 1990 to 2005.

are rainfed, and farms from villages that have both irrigated and
rainfed farms.2

In addition to information about climate and socioeconomic
conditions, the characteristics of a region’s soils also are impor-
tant determinants of net crop revenue. To account for soils, we
rely on a soils map from FAO’s website. There are three major
soil types—clay, sand, and loam soils. The final set of variables
for our analysis was created by generating a variable measuring
the share of cultivated area with each type of soil. These soil
variables are used directly in the regression. We also include
county elevation data.

In order to proceed with our analysis of the effect of climate
on agriculture, we need to match the climate data with the so-
cioeconomic data of each farmer. Although there are 752 coun-
ties with meteorological stations and 533 counties in which
CNBS collected HIES data, in only 124 counties there are both
meteorological stations and CNBS samples. In order to ensure
that we have a relatively good match between the crop revenue
(and other socioeconomic) data and climate information, we
restrict our sample to only those households in counties with
meteorological stations. In total, our final sample has 8,405
households in 915 villages, in 124 counties in 28 provinces.3

By relying on the measurements of climate in the meteoro-
logical stations, we avoid some of the climate interpolation
problems faced by previous Ricardian studies.

3.1. Model specifications

In order to capture the expected nonlinear relationship be-
tween net revenue and climate, we specify the following model
to examine the impacts of climate change on agriculture in
China:

V = b0 + b1 · T + b2 · T 2 + b3 · P + b4 · P 2

+
∑

j

dj · Zj + e, (3)

where the dependent variable, V, is crop net revenue per hectare
(as defined above). The variables T and P represent vectors of
temperature and precipitation (with one variable for temperature
and one variable for precipitation for each of the four seasons).
In addition, we include a vector, Z, of county-, village-, and
household-level socioeconomic and other control variables. In-
cluded in Z are our measures of soil type, elevation of the
county, terrain (1 if the village is located on a plain and 0 if
the village is on a mountain), the share of a village’s cultivated
area that is irrigated, a dummy for access to markets (1 if there
is a road that connects the village to the outside world and 0
if there is not), and a variable measuring the distance between

2 Rainfed is defined as a farm that relies only on rainwater and has no other
source of water.

3 In order to match the climate data and household data, we dropped those
households in counties without a weather station. In addition, we dropped those
households that did not cultivate any crops (characterized with total cropping
sown areas of zero).
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Table 1
Descriptive statistics for major variables used for analyzing the determinants of crop net revenue

All farms Irrigated farms Rainfed farms Irrigated or rainfed farms

Mean Standard Mean Standard Mean Standard Mean Standard
deviation deviation deviation deviation

Crop net revenue per ha (yuan/year) 10,146 12,280 12,319 12,846 7,464 9,736 10,206 11,841
Spring temperature (◦C) 13.2 4.7 13.8 3.5 11.05 4.7 12.6 4.3
Summer temperature (◦C) 24.2 3.2 25.1 2. 6 22.6 3.4 24.0 3.2
Fall temperature (◦C) 13.7 5.6 14.4 4.9 11.1 5.6 13.0 5.4
Winter temperature (◦C) 0.3 8.5 0.9 6.7 −3.3 8.9 −0.9 8.0
Spring precipitation (mm/month) 76.2 65.3 81.7 79.1 53.2 43.4 69.3 67.4
Summer precipitation (mm/month) 144.2 62.5 128.4 72.1 139.8 51.9 133.4 64.3
Fall precipitation (mm/month) 56.8 32.5 48.6 31.4 53.8 33.2 50.9 32.3
Winter precipitation (mm/month) 23.2 24.1 28.2 27.8 15.0 19.0 22.4 25.2
Share of land areas with clay soil (%) 30 38 31 40 17 31 25 37
Share of land areas with silt soil (%) 31 39 28 36 43 43 34 40
Plain (1 = yes; 0 = no) 0.45 0.50 0.75 0.43 0.35 0.48 0.58 0.49
Road (1 = yes; 0 = no) 0.97 0.18 0.97 0.18 0.95 0.22 0.96 0.20
Distance to township 6.1 4. 5 5.2 3.6 7.1 5.2 6.0 4.4

government (km)
Share of irrigated areas in village (%) 48.9 39.9 – – – – 54.1 47.7
If participate production association

(1 = yes; 0 = no)
0.03 0.18 0.05 0.22 0.01 0.11 0.04 0.18

Share of labor without receiving
education (%)

7.5 18.5 6.1 16.1 9.6 21.6 7.6 18.8

Cultivated land area per 0.72 1.00 0.57 0.72 0.99 1.29 0.75 1.03
household (ha)

Elevation (meter) 614 750 581 883 709 778 636 841

Note: The observation for all households is 8,405; the observation for irrigated households is 2,750; the observation for rainfed farms is 2,119; and the observation
for irrigated or rainfed farms is 4,869.

the village and township government. There are also a series
of household-level variables in Z, including the average educa-
tion level of each member of the household that is in the labor
force, a household’s land area, and a dummy variable measuring
whether or not a household belongs to a production coopera-
tive. The symbols bk and dj are vectors of the coefficients to be
estimated; e is an error term.

In order to assess the robustness of the model, we try a num-
ber of alternative specifications of Eq. (3). For example, we also
try using the log of net revenue as the dependent variable. We
test whether precipitation and temperature are independent by
adding climate interaction terms. We divide the sample between
households that live in irrigated and rainfed villages and esti-
mate separate regressions for each subsample (Schlenker et al.,
2005). As in Schlenker et al. (2005), we assume that in this
analysis the choice of irrigation is exogenous.

Based on this model, the change in land value from a marginal
change in temperature or precipitation evaluated at a particular
vector of seasonal temperatures T or precipitation P is:

∂Vi

∂T
= b1 + 2 · b2 · −

T ,

∂Vi

∂P
= b3 + 2 · b4 · P .

(4)

With four seasons, one can calculate the marginal impact of
each season. The marginal effect depends on the level of tem-
perature and precipitation. We present the results for the mean
temperature and precipitation in the sample. While seasonal ef-
fects might be of some interest, the more relevant expression
for studying global warming is the overall change in annual
climate. The annual average marginal effect can be calculated
as the sum of the average seasonal marginal effects across all
farms.

4. Results

In Table 2, we explore a regression model of net revenue per
hectare on climate, soils, and a number of farm variables. We
examine this regression for four samples: all the farms (some of
which are not defined as irrigated rainfed (see below), farms that
are irrigated, farms that are rainfed, and farms that are either ir-
rigated or rainfed. The first regression includes 8,405 farms, the
second 2,750 irrigated farms, the third 2,119 rainfed farms, and
the last regression includes 4,869 farms from the last two sub-
samples (2,750 + 2,119). There are approximately 3,500 farms
in villages with a mix of rainfed and irrigated farms where
we cannot determine whether the farm is irrigated or not. The
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Table 2
Regressions of net crop revenue

Net crop revenue (yuan/ha)

All farms Irrigated farms Rainfed farms Irrigated or rainfed farms

Spring temperature 1,453 4,149 1,789 419
(2.18)∗ (1.79) (1.54) (0.48)

Spring temperature squared −118.1 −170.4 −106.9 −60.8
(5.88)∗∗ (2.18)∗ (2.97)∗∗ (2.13)∗∗

Summer temperature −1,803 1,263 −6,200 −3,002
(2.01)∗ (0.57) (4.75)∗∗∗ (2.80)∗∗∗

Summer temperature squared 48.7 17.0 125.9 84.7
(2.53)∗ (0.35) (4.03)∗∗∗ (3.54)∗∗∗

Fall temperature 119 −5,178 2,678 922
(0.20) (2.55)∗ (2.54)∗ (1.15)

Fall temperature squared −12.1 67.7 −116.1 −82.0
(0.56) (0.93) (2.60)∗ (2.71)∗∗∗

Winter temperature 1,226 2,064 911 1,431
(4.44)∗∗ (3.64)∗∗ (1.66) (4.06)∗∗∗

Winter temperature squared 62.6 63.9 67.2 63.6
(7.34)∗∗ (2.91)∗ (4.87)∗∗ (5.87)∗∗∗

Spring precipitation −300.6 −268.3 −132.3 −317.3
(8.52)∗∗ (2.84)∗ (1.50) (5.90)∗∗∗

Spring precipitation squared 1.0574 0.7255 0.6050 1.145
(8.56)∗∗ (2.21)∗ (1.69) (6.23)∗∗∗

Summer precipitation 5.61 151.1 −76.5 11.07
(0.39) (3.68)∗∗ (2.70)∗ (0.58)

Summer precipitation squared −0.06078 −0.2414 0.1322 −0.036
(1.55) (2.22)∗ (1.64) (0.66)

Fall precipitation −107.4 −413.8 −171.6 −97.1
(2.92)∗ (3.67)∗∗ (2.71)∗ (1.99)∗∗

Fall precipitation squared 0.9442 2.3112 1.2763 0.879
(5.31)∗∗ (3.22)∗∗ (4.25)∗∗ (3.73)∗∗∗

Winter precipitation 554.4 668.9 655.9 637.2
(8.07)∗∗ (3.43)∗∗ (5.33)∗∗ (6.30)∗∗∗

Winter precipitation squared −6.355 −5.212 −8.248 −7.022
(7.96)∗∗ (2.42)∗ (5.27)∗∗ (6.21)∗∗∗

Share of clay soil 4,360 201 −109 1,453
(7.26)∗∗ (0.14) (0.08) (1.71)∗

Share of silt soil 2,080 2,865 747 11,923
(3.85)∗∗ (2.68)∗∗ (0.79) (1.80)∗

Plain (1 = yes; 0 = no) 856 −1,459 1,248 71.9
(2.57)∗ (1.96)∗ (2.11)∗ (0.16)

Road (1 = yes; 0 = no) 2,022 722 3,313 2,370
(2.96)∗∗ (0.55) (3.66)∗∗ (2.97)∗∗∗

Distance to township government 21.9 83.4 −35.8 4.32
(0.77) (1.19) (0.93) (0.12)

Share of irrigation in village 4.6 12.5
(1.11) (2.74)∗∗∗

If participate production association (1 = yes; 0 = no) 1,713 2,940.6 −2,168.4 2,496
(2.50)∗ (2.57)∗ (1.27) (2.85)∗∗∗

Share of labor without education 4.901 24.6 −9.3 10.7
(0.71) (1.71) (0.90) (1.19)

Log of cultivated land area per household −5,189 −4,942 −3,934 −4,587
(29.46)∗∗ (13.72)∗∗ (14.53)∗∗ (20.90)∗∗∗

Elevation −1.956 −0.920 −3.493 −1.769
(4.56)∗∗ (1.41) (2.46)∗ (3.84)∗∗∗

Constant 26,242 −4,167 70,431 39,085
(3.28)∗∗ (0.19) (5.22)∗∗ (4.05)∗∗∗

Observations 8,405 2,750 2,119 4,869
Adjusted R2 0.21 0.16 0.25 0.20
F-test 89.23 22.63 29.62 48.34

Absolute values of t-statistics in parentheses.
∗ Significant at 10%; ∗∗ significant at 5% level; ∗∗∗ significant at 1% level.
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goodness of fit measures (adjusted R2) for all of the models
ranges from 0.16 to 0.25, a level that is relatively high for
cross-sectional household data.4

The analysis of all farms shown in the first column in Table 2
reveals that many of the control variables are highly significant.
Clay and silt soils increase net revenues per hectare (compared
to sand). It is advantageous for a farmer to be on a plain, have
access to a road, and participate in a production association. It
is disadvantageous (lower net revenue per hectare) for a farm
to be a larger size or higher elevation. The effect of size may
be an artifact of the omission of household labor as a cost.
Other factors such as whether the village has more irrigated
land, laborers with less education, or is closer to the township
government are not significant.5

Most important for this article are the results for the climate
variables. At least one of the climate variables is significant
in every season except for fall temperature and summer pre-
cipitation. Many of the coefficients of the squared terms are
significant, implying that climate effects are nonlinear. How-
ever, the quadratic nature of the climate variables makes the
coefficients themselves difficult to interpret. As a result, in
Table 3, we calculate the marginal impacts of climate using
both the linear and the squared coefficients of each variable. The
first column of Table 3 presents the annual marginal temper-
ature and precipitation effects, calculated at the sample mean,
for the entire sample. The results suggest that higher annual
temperatures slightly reduce net revenues per hectare in China
(−10 USD/◦C). The overall temperature elasticity is −0.09
(% change in net revenue/% change in temperature). Consis-
tent with earlier Ricardian analyses, the seasonal temperature
effects are larger and offsetting. Higher spring temperatures are
harmful, whereas warmer summer and especially winter tem-
peratures are beneficial.6 Higher annual precipitation increases
net revenue (+15 USD/mm/mo). The overall precipitation elas-
ticity is +0.8 (% change in net revenue/% change in precipi-
tation). As with the seasonal temperature effects, the seasonal
precipitation effects are larger and offsetting. A wetter spring
is harmful, whereas a wetter winter is beneficial.

We also examine a number of alternative specifications in Ta-
ble A.1 and Table A.2 in the Appendix. Specifically, we focus
on the model with the log of net revenue as the dependent vari-
able. This model yields consistent coefficients and higher F-test

4 The adjusted R2 of our estimation results are also similar to that in
other countries, for example, in the research of Africa (Kurukulasuriya and
Mendelson, 2008) the adjusted R2 is 0.35; for Brazil and India, it is 0.40 and
0.56, separately (Mendelson et al., 2007).

5 The proximity to township government may not matter because townships
are small or government is not. The amount of irrigation in the village may
not matter if it does not reflect the irrigation on the farm itself. Finally, the
education of laborers may not matter because better educated laborers may cost
more.

6 For both spring wheat and early rice in China, their planting seasons are
from February to April. If the winter temperature is warmer, their planting
seasons can begin earlier.

Table 3
Marginal impacts of climate on crop net revenue

All farms Irrigated Rainfed Irrigated or
farms farms rainfed farms

Temperature (USD/ha/◦C)
Spring −230∗∗ −49∗ −143∗∗ −153∗∗
Summer 76∗ 286 −15∗∗∗ 147∗∗∗
Fall −29 −458∗ −68∗ −166∗∗∗
Winter 173∗∗ 288∗∗ 130∗∗ 181∗∗∗
Annual −10∗ 68∗ −95∗∗ 8∗∗∗
Annual elasticity −0.09∗ 0.62∗ −0.88∗∗ 0.07∗∗∗

Precipitation (USD/ha/mm/mo)
Spring −19∗∗ −22∗ −6 −22∗∗∗
Summer −2 11∗ −5∗ 0.2
Fall −1∗ −21∗∗ −4∗ −1∗∗
Winter 36∗∗ 59∗ 38∗∗ 44∗∗∗
Annual 15∗ 27∗ 23∗ 22∗∗
Annual elasticity 0.80∗ 1.48∗ 1.24∗ 1.06∗∗

∗ Significant at 10%; ∗∗ significant at 5% level; ∗∗∗ significant at 1% level.
Yuan converted to 2006 USD using exchange rate of 8 yuan/USD. We wanted
to allow easy comparison of marginal impacts with studies in other countries.

values.7The model also does a better job with heteroscedastic-
ity, explaining some observations with much higher net revenue
per hectare than the sample average. However, it is important
to note that the log model yields similar results to the linear
model. We also explored alternative specifications that control
for land per household. The results are robust. When including
either the log of land or when including a quadratic term for
land, the overall climate results are similar. A third important
variant that we explored concerns adding climate interaction
terms between temperature and precipitation. We found that
these terms were generally insignificant except for the fall sea-
son. However, adding interaction terms confounds the role of
temperature and precipitation so that marginal effects depend on
both variables. For simplicity, we rely on the model presented
in this article. However, even when interactions are included,
the overall results are robust across the different specifications.

Because of the importance of irrigation in China, it is helpful
to understand the sensitivity of irrigated versus rainfed farms (as
first suggested by Schlenker et al., 2005). Earlier research has
indicated that irrigated and rainfed farms have different climate
sensitivities in Africa (Kurukulasuriya and Mendelsohn, 2007)
and South America (Seo and Mendelsohn, 2008). As a result,
in this article we examine the subsamples of farms that were
in irrigated villages and the subsamples of farms that were in
rainfed villages. Farms that were in villages that had both were
omitted because we could not identify whether the farm used
irrigation. After dividing the sample, we then estimated the net
revenue model on the two subsamples as shown in columns 2
and 3 of Table 2. We also estimated the regression for the two
subsamples combined in column 4 of Table 2.

7 It is necessary to note that logging the data will move it closer to the mean,
automatically improving the R2 and F-test value.



J. Wang et al./Agricultural Economics 40 (2009) 323–337 329

Comparing columns 2 and 3 in Table 2, most of the coeffi-
cients of the control variables for rainfed and irrigated farms are
not similar to each other. The one exception is that larger plots
for both samples have lower net revenues. Other variables such
as percent clay soil, distance to township government, share of
labor that is uneducated, and farmer characteristics remain in-
significant. But the irrigated and rainfed regressions often had
significantly different coefficients. Silt soil and participating in
a production association increased the net revenue of irrigated
land but had no significant effect on rainfed land. Being on a
plain increased the value of rainfed land but decreased the value
of irrigated land. Being on a road increased the value of rainfed
land but had no effect on irrigated land. Higher elevation de-
creased the value of rainfed land but had no effect on irrigated
land.

The coefficients of the climatic variables for the rainfed and
irrigated regressions in Table 2 were also different. Many of
the climate coefficients are still significant. Some had the same
sign though not the same magnitude. Finally, some coefficients
switched sign, such as fall temperature, summer precipitation,
and fall precipitation. However, to judge the effect of climate, it
is helpful to calculate the marginal impacts. The results, shown
in columns 2 and 3 of Table 3, reveal that temperature has a
fundamentally different effect on irrigated versus rainfed farm-
ing. Higher annual temperatures increase the net revenue of
irrigated farms by +68 USD/◦C but reduce the net revenue of
rainfed farms by −95 USD/◦C. The seasonal effects are also dif-
ferent. Warmer falls are particularly harmful to irrigated farms,
whereas warmer summers and winters are beneficial. In con-
trast, warmer springs and falls are harmful to rainfed farms,
whereas warmer winters are beneficial. Higher annual precip-
itation, however, has almost identical effects on irrigated and
rainfed farms. Wetter climates increase irrigated net revenues by
27 USD/mm/mo and rainfed net revenue by 23 USD/mm/mo.
Both irrigated and rainfed farms prosper more than the full
sample regression suggests. The lower marginal values in the
full sample may be due to a measurement error because the full
cost of irrigation is not measured. As rain increases, farmers
find it profitable to switch from irrigation to rainfed agriculture
(or reduce the irrigated water they use) to save irrigation costs.
In practice, they earn more. But using this data without irriga-
tion costs, it appears that they are switching from high-valued
irrigation to low-valued rainfed farming.

It is also interesting to compare the results for the regression
with both irrigated and rainfed farms (column 4 in Table 2) with
the results of the two independent regressions (columns 2 and
3). For most of the coefficients, the sign and significance of the
variable in the combined regression depends on the significant
coefficient in the two independent regressions. For example, the
beneficial effect of silt soil in the irrigated regression makes silt
soil beneficial in the combined regression. Similar evidence can
be found for proximity to a road, participating in a production
association and elevation. Finally, some variables (such as dis-
tance to township government, education, and cultivated land
per household) have the same sign and significance in all three

regressions. There are two exceptions to this rule. Clay soil is
not significant in either the irrigated or the rainfed regressions
but it is significant in the combined regression. Being on a plain
is significant in both independent regressions but with opposite
signs, so it is not significant in the combined regression.

The sign and significance of the climate variables (seasonal
temperature and precipitation) in the combined regression also
mainly depend on the significant coefficient in the two inde-
pendent regressions. The marginal results in Table 3 clearly
demonstrate where there are offsetting results. For example,
warmer temperature increases net revenue by 68 USD/mm/mo
for irrigated farms and reduces net revenue by 95 USD/mm/mo
for rainfed farms. Combining these two samples together,
the net revenue only increases by 8 USD/mm/mo. Similarly,
more precipitation produces a slightly smaller benefit in the
combined sample than for either irrigated or rainfed farms
alone.

The climate results are the most important results of the
article. At least one of the climate variables is significant in
every season except for fall temperature and summer precipita-
tion. Many of the coefficients of the squared terms are signifi-
cant, implying that climate effects are nonlinear. However, the
quadratic nature of the climate variables makes the coefficients
themselves difficult to interpret. As a result, in Table 3, we cal-
culate the marginal impacts of climate using both the linear and
the squared coefficients of each variable. The first column of
Table 3 presents the annual marginal temperature and precipita-
tion effects, calculated at the sample mean, for the entire sample.
The results suggest that higher annual temperatures slightly re-
duce net revenues per hectare in China (−10 USD/◦C). The
overall temperature elasticity is −0.09 (% change in net rev-
enue/% change in temperature). Consistent with earlier Ricar-
dian analyses, the seasonal temperature effects are larger and
offsetting. Higher spring temperatures are harmful, whereas
warmer summer and especially winter temperatures are bene-
ficial.8 Higher annual precipitation increases net revenue (+15
USD/mm/mo). The overall precipitation elasticity is +0.8 (%
change in net revenue/% change in precipitation). As with the
seasonal temperature effects, the seasonal precipitation effects
are larger and offsetting. A wetter spring is harmful, whereas a
wetter winter is beneficial.

4.1. Regional impacts

Although the average effect of temperature is negative and
the marginal effect of precipitation is positive, the effects are
quite different in different regions of the country. In order to un-
derstand how climate impacts vary across China, the marginal
impacts of temperature and precipitation are mapped for ir-
rigated and rainfed farms. The marginal temperature results
of the irrigation regression are shown in Fig. 1. With irrigated

8 For both spring wheat and early rice in China, their planting seasons are
from February to April. If the winter temperature is warmer, their planting
seasons can begin earlier.
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Fig. 1. Marginal temperature effect—irrigated farms.

farms, warmer temperatures are more beneficial in the southeast
and southwest regions (128–255 USD/ha/◦C). Further, irrigated
farms in the far south are no longer harmed by warming. How-
ever, the rest of China has similar results. Farms in the central
region continue to enjoy mild benefits from warming (up to 127
USD/ha/◦C). The far north has the same marginal damages. The
marginal precipitation effects for irrigated farms are shown in
Fig. 2. The damages in the wet southeast disappear and become
small benefits. All irrigated farms in China enjoy small benefits
from increased rain.

The marginal temperature results of the rainfed farm regres-
sion are shown in Fig. 3. The temperature impacts show a
marked progression moving from the far south to the far north.
There are large damages (−166 to −331 USD/ha/◦C) in the
far south from warming. These turn into smaller damages in
most of the rest of the country (up to −165 USD/ha/◦C). The
far north and a few cold places in the southeast get small gains
from warming (up to 127 USD/ha/◦C). The results imply that
most of China is slightly too warm for rainfed agriculture. Any
further warming is therefore harmful except in the far north.

The marginal precipitation effects are shown in Fig. 4. In-
creased rain will damage rainfed farms in the wet southeast but
benefit rainfed farms in the rest of the country.

4.2. Climate simulations

In order to obtain a sense of the impact of future climate
changes, we simulate climate change impacts using the econo-
metric model described above. The simulation is admittedly
just a first step since it assumes that China’s farms will remain
as they are now. Clearly this will not be the case as future
farmers make many changes across the landscape. However,
the analysis of the impact of future climate scenarios on today’s
farms does at least give a sense of the importance of climate
change.

In this study, we look at the results of three climate models:
Parallel Climate Model (PCM), Hadley CM3 (Hadley), and
the Canadian Climate Centre (CCC) model. Although they do
not give a complete range of possible impacts, the three models
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Fig. 2. Marginal precipitation effect—-irrigated farms.

were chosen to reflect a broad range of climate sensitivities. The
2100 average prediction for temperature change in China thus
ranges from 2.5◦C in the PCM model to 4.0◦C in the Hadley
model, and 4.1◦C in the CCC model. The models also provide
different estimates of the change in precipitation as shown in
Table 4.

The national results are quite different in each scenario. The
damages are much smaller in the relatively mild PCM scenario.
However, in the Hadley and CCC scenarios, the damages are
much larger. The impacts grow over time as the warming con-
tinues. By 2100, the damages reach 700 USD/ha in the Hadley
scenario. The impacts, however, vary a great deal by farm type.
Climate change is beneficial to irrigated farms as they can adapt
to the extra heat by using more water. Of course, this result is
predicated on the condition that there is more water to use. Rain-
fed farms, in contrast, are hurt immediately by climate change
and the damages intensify with time.

The results are not uniform across regions. The Southeast
is much less impacted by climate change as there is ample
rainfall to offset the extra heat in this region. The Northeast and
Northwest, in contrast, are very sensitive to warming.

5. Conclusion and policy implications

This study conducts a Ricardian analysis on 8,405 farm
households across 28 provinces in China. Net revenues are re-
gressed on seasonal climate and a number of control variables.
Several specifications of the model are estimated. The empirical
results are robust. The average impact of higher temperatures
is negative and the average impact of more precipitation is pos-
itive. However, marginal increases in temperature and rainfall
have very different effects on different farm types in different
regions. Warming is beneficial to irrigated farmers in China
as they can use water to offset the heat. Rainfed farmers, in
contrast, are quite vulnerable to warming and they will suffer
reductions in net revenue. More rain is likely to be harmful to
rainfed farmers in the wet southeast but will benefit farmers in
the remaining regions. Irrigated farmers, like rainfed farmers,
will gain from increased rainfall.

These basic results are similar to results from other countries
(Kurukulasuriya et al., 2006; Mendelsohn and Dinar, 2003;
Mendelsohn et al., 1994, 2001; Seo and Mendelsohn, 2008).
First, climate has an effect on net revenue in every country.
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Fig. 3. Marginal temperature effect—rainfed farms.

Second, higher temperatures increase the net revenues of irri-
gated farms. Third, higher temperatures are beneficial to rainfed
farms in cooler climates but harmful to rainfed farms in warm
or hot climates. Fourth, more precipitation is beneficial unless
there is an excessive amount of rain. Fifth, seasonal impacts
vary and are offsetting.

Our results, however, are not completely consistent with pre-
vious economic work on China’s agricultural sector (Liu et al.,
2004). Our study finds that warming will be harmful to agri-
culture in China and that harm will grow over time, whereas
Liu et al. (2004) found it was beneficial. We believe that this
difference may lie in the choice of data sets. The farm data set
in this study is likely more reliable than the county data set
used by Liu et al. (2004).9 However, not all of the results of the
two studies were different. Both studies found that increased

9 The importance of having detailed household data for Ricardian analyses
rather than county-level data has already been recognized (e.g., Dinar et al.,
2008). Since the Ricardian technique implicitly measures adaptation in farm-
ers’ decision, having a detailed data set with specific adaptation options (in
the household data set) provides richer results and more meaningful policy
implications.

rainfall was beneficial. Both studies found that climate effects
are nonlinear and effects differ by season. Hence, although the
temperature results are different, many of the other results of
the two studies are similar.

Our economic analysis is also quite consistent with agro-
nomic studies. Both analyses predict that global warming will
be harmful to China’s agriculture. Both types of studies predict
that rainfed grains are especially vulnerable. However, the eco-
nomic analysis suggests that the overall impacts will be smaller.
We believe that the crop study models lead to more pessimistic
results because they do not consider adaptation. They do not
include the possibility of crop switching, changes in irrigation,
or other changes that farmers might undertake. These adap-
tations are implicitly captured in the Ricardian method. The
agronomic studies also do not generally measure vegetables
and other high-valued crops grown in irrigated conditions, but
rather deal with grains. Therefore, they may underestimate the
benefits of warming to irrigated farms.

The marginal effect of higher temperature for China is only
mildly harmful for two important reasons. Many areas in China
are cool so that a small warming causes little harm. Further, a
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Fig. 4. Marginal precipitation effect—rainfed farms.

large fraction of farms in China are irrigated and they at first
benefit from warming. At least at first, the agricultural sector
as a whole in China is only mildly vulnerable. However, over
time, if warming intensifies, the damages to the rainfed sector
will lead to growing losses.

An important message in the research is that irrigation is
critical to China’s agriculture system. Nearly 60% of cultivated
land in China is irrigated. This reliance on irrigation, however,
comes with a price. China’s ability to cope with future climate
change depends on the availability of water for irrigation. Our
analysis assumes that water will continue to be available. Data
were not available to measure the amount of water each farmer
was using. It was therefore not possible to measure the im-
portance of available water. This could be a critical problem
for China if climate warming makes water increasingly scarce.
The negative results of this study could become much larger if
warming forces many irrigated farms to become rainfed farms.
Clearly there is a strong need in China for further analysis of
the effects of climate change on water.

It is also quite apparent that the effects of climate change
are not going to be uniform across the country. Warm-

ing will assist areas that are currently very highly produc-
tive and will further handicap areas that have below average
productivity. In particular, warming will help the southeast
region but hurt the west and far north. China’s policy mak-
ers need to be aware that warming is likely to impose addi-
tional costs on specific regions that already have below average
incomes.

The fact that the agronomic studies predict much larger dam-
ages than the Ricardian studies suggest that adaptation matters.
The ability of China’s farmers to change and adapt to new
conditions has allowed China to outperform other agricultural
economies in the world and will continue to be important with
respect to climate change. However, for farmers to be able to
endure future climate changes, it is critical that policies allow
them to get the most out of the available factors of produc-
tion and natural resources. The results of this study suggest
that the direct effects of temperature and precipitation on farms
may not be a great risk to China in the near future. How-
ever, the effect of climate change on water availability may
be very important. Given that water is already a very criti-
cal resource in certain regions of China, policy makers may
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Table 4
Climate simulation results across climate scenarios to Chinese farms

2040–2050 2090–2100

PCM HADCM3 CCM2 PCM HADCM3 CCM2

Change of temperature (◦C) 0.74 1.08 1.5 2.45 4.01 4.1
Change of precipitation (%) 3.44 −1.31 0.18 8.23 7.69 −1.71
National change (USD/ha)

All farms −110 −76 −146 −397 −686 −570
Irrigated farms 348 521 703 1,071 1,636 1,696
Rainfed farms −450 −567 −838 −1,565 −2,657 −2,575
Irrigated or rainfed farms 10 83 98 90 241 348

Regional change (USD/ha)
Northeast
All farms −193 −238 −358 −692 −1,205 −1,163
Irrigated farms 218 274 378 612 833 789
Rainfed farms −113 −80 −160 −452 −839 −723
Irrigated or rainfed farm −43 −18 −35 −98 −87 −21

Southeast
All farms 0 97 90 −26 −67 81
Irrigated farms 675 1,000 1,368 2,155 3,411 3,515
Rainfed farms −605 −825 −1,187 −2,094 −3,552 −3,538
Irrigated or rainfed farms 52 151 190 231 479 604

Middle
All farms −95 −36 −97 −338 −572 −427
Irrigated farms 376 579 778 1,172 1,816 1,907
Rainfed farms −627 −826 −1,198 −2,151 −3,617 −3,559
Irrigated or rainfed farms 48 162 200 227 488 635

Northwest
All farms −224 −300 −440 −804 −1,403 −1,391
Irrigated farms −241 −352 −506 −886 −1,580 −1,611
Rainfed farms −296 −366 −551 −1,066 −1,861 −1,799
Irrigated or rainfed farms −3 23 27 25 98 141

Southwest
All farms −107 −24 −90 −363 −587 −398
Irrigated farms 577 956 1,276 1,880 3,052 3,297
Rainfed farms −938 −1,224 −1,768 −3,153 −5,205 −5,097
Irrigated or rainfed farms −58 36 16 −110 −38 142

Note: (1) The base year is 1990–2000.
(2) Climate scenario for A2 emissions scenario. Data for each model is available at http://cera-www.dkrz.de/CERA/index.html
(3) The Northeast region includes Liaoning, Jilin, Heilongjiang, Tianjin, and Hebei provinces; the Southeast region includes Shanghai, Jiangsu, Zhejiang, Fujian,
Shandong, and Guangdong provinces; the Middle region includes Shanxi, Anhui, Jiangxi, Henan, Hubei, Hunan, Inner Mongolia, and Guangxi provinces; the
Northwest region includes Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang provinces; and the Southwest region includes Chongqing, Sichuan, Guizhou, and Yunnan
provinces.

want to use this resource wisely, especially in regions where
water is scarce. Climate change increases the pressure to de-
velop institutions and infrastructure in water-scarce regions to
treat water as a valuable resource. Because water scarcity is
a regional issue, it is very important that China adopt water
policies in each region that reflects the regional scarcity of
water.

In order to address future warming, China may also consider
developing management practices and new varieties (crops and
livestock) for a warmer world. Finally, China would benefit
from adaptation at large, by having new technologies (research),
educating farmers about better technologies (extension), and
building credit institutions to allow farmers to purchase and
apply needed technology.
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Appendix: Alternative functional specifications

Table A.1
Alternative Ricardian regressions of all farms

With interaction terms Without interaction terms

Net crop revenue Log net crop revenue Net crop revenue Log net crop revenue

Spring temperature −457.7 −0.2487 609.0 −0.2420
(0.63) (5.02)∗∗∗ −0.92 (5.31)∗∗∗

Spring temperature squared −92.0 −0.00612 −113.7 −0.00316
(3.94)∗∗∗ (3.83)∗∗∗ (5.50)∗∗∗ (2.23)∗∗

Summer temperature −3,702 −0.2419 −2,121 −0.3572
(3.39)∗∗∗ (3.25)∗∗∗ (2.38)∗∗ (5.84)∗∗∗

Summer temperature squared 105.48 0.01057 68.99 0.01219
(4.44)∗∗∗ (6.52)∗∗∗ (3.47)∗∗∗ (8.95)∗∗∗

Fall temperature 2,403 0.415 719.6 0.4800
(2.85)∗∗∗ (7.21)∗∗∗ (1.14) (11.07)∗∗∗

Fall temperature squared −81.05 −0.01529 −5.69 −0.01911
(2.33)∗∗ (6.43)∗∗∗ (0.25) (12.22)∗∗∗

Winter temperature 1,593 0.2519 1,194 0.1972
(5.23)∗∗∗ (12.11)∗∗∗ (4.18)∗∗∗ (10.07)∗∗∗

Winter temperature squared 76.37 0.01072 58.08 0.00996
(7.55)∗∗∗ (15.52)∗∗∗ (6.49)∗∗∗ (16.23)∗∗∗

Spring precipitation −325.27 −0.03730 −304.86 −0.02262
(5.78)∗∗∗ (9.71)∗∗∗ (8.31)∗∗∗ (8.99)∗∗∗

Spring precipitation squared 1.06 0.00010 1.002 0.00009
(7.50)∗∗∗ (10.40)∗∗∗ (7.79)∗∗∗ (10.46)∗∗∗

Summer precipitation −63.78 −0.00126 39.28 0.00460
(1.72)∗ (0.49) (2.93)∗∗∗ (5.01)∗∗∗

Summer precipitation squared −0.11 −0.00001 −0.12 −0.00001
(2.67)∗∗∗ (2.90)∗∗ (3.10)∗∗∗ (5.26)∗∗∗

Fall precipitation 20.28 0.00264 −61.53 −0.02041
(0.39) (0.74) (1.62) (7.83)∗∗∗

Fall precipitation squared 1.24 0.00018 0.792 0.00015
(5.20)∗∗∗ (11.13)∗∗∗ (4.31)∗∗∗ (11.60)∗∗∗

Winter precipitation 538.53 0.05703 469.33 0.04787
(7.10)∗∗∗ (11.01)∗∗∗ (6.56)∗∗∗ (9.76)∗∗∗

Winter precipitation squared −6.88 −0.00075 −5.46 −0.00068
(7.23)∗∗∗ (11.55)∗∗∗ (6.56)∗∗∗ (11.98)∗∗∗

Spring precipitation∗temperature −0.835 0.00062
(0.28) (3.01)∗∗∗

Summer precipitation∗temperature 4.08 0.00014
(2.63)∗∗∗ (1.31)

Fall precipitation∗temperature −8.62 −0.00172
(2.79)∗∗∗ (8.18)∗∗∗

Winter precipitation∗temperature 15.93 −0.00023
(2.44)∗∗ (0.51)

Share of land areas with clay soil 5,477 0.556 5,345 0.423
(8.07)∗∗∗ (12.01)∗∗∗ (8.55)∗∗∗ (9.88)∗∗∗

Share of land areas with silt soil 3,412 0.300 3,259 0.311
(6.02)∗∗∗ (7.76)∗∗∗ (5.87)∗∗∗ (8.18)∗∗∗

Plain (1 = yes; 0 = no) 727 0.171 975 0.196
(2.06)∗∗ (7.11)∗∗∗ (2.83)∗∗∗ (8.30)∗∗∗

Road (1 = yes; 0 = no) 2,771 0.108 2,584 0.103
(3.86)∗∗∗ (2.21)∗∗ (3.64)∗∗∗ (2.11)∗∗

Distance to township government −32.02 −0.001 −30.89 0.002
(1.07) (0.69) (1.04) (1.11)

Share of irrigated areas in village 17.21 0.00362 15.68 0.003
(4.01)∗∗∗ (12.36)∗∗∗ (3.68)∗∗∗ (11.82)∗∗∗

If participate production association (1 = yes; 0 = no) 2,747 0.168 2,601 0.137
(3.86)∗∗∗ (3.45)∗∗∗ (3.67)∗∗∗ (2.82)∗∗∗

Share of labor without receiving education 0.364 −0.00073 0.517 −0.001
(0.05) (1.48) (0.07) (1.88)∗

Cultivated land area per household −1,992 −0.310 −1,925 −0.303

(continued)
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Table A.1
(Continued)

With interaction terms Without interaction terms

Net crop revenue Log net crop revenue Net crop revenue Log net crop revenue

(11.66)∗∗∗ (26.55)∗∗∗ (11.35)∗∗∗ (26.09)∗∗∗
Constant 41,700 10.41 22,465 11.12

(4.05)∗∗∗ (14.81)∗∗∗ (2.97)∗∗∗ (21.44)∗∗∗
Observations 8405 8405 8405 8405
Adjusted R2 0.15 0.39 0.15 0.39
F-test 51.21 189.32 58.47 213.53

Absolute value of t-statistics in parentheses.
∗ Significant at 10%; ∗∗ significant at 5%; ∗∗∗ significant at 1%.

Table A.2
Alternative specifications of irrigated and rainfed farms

Net crop revenue

Irrigated farms Rainfed farms Irrigated or rainfed farms

Spring temperature 6,811 −1,466 −2,185
(2.80)∗∗∗ (1.37) (2.32)∗∗

Spring temperature squared −324.8 −76.5 −6.982
(3.85)∗∗∗ (1.84)∗ (0.21)

Summer temperature 7,285 −8,742 −7,035
(2.11)∗∗ (5.80)∗∗∗ (5.25)∗∗∗

Summer temperature squared −119.55 254.25 197.82
(1.67)∗ (6.78)∗∗∗ (6.60)∗∗∗

Fall temperature −8,845 6,780 5,378
(3.35)∗∗∗ (5.19)∗∗∗ (4.91)∗∗∗

Fall temperature squared 331.65 −258.73 −258.08
(3.05)∗∗∗ (4.07)∗∗∗ (5.53)∗∗∗

Winter temperature 2,238 1,583 1,651
(3.04)∗∗∗ (2.67)∗∗∗ (4.47)∗∗∗

Winter temperature squared 51.61 97.91 88.26
(1.41) (6.55)∗∗∗ (7.13)∗∗∗

Spring precipitation −294.88 −177.44 −264.98
(2.41)∗∗ (1.39) (3.47)∗∗∗

Spring precipitation squared −0.99 0.61 1.13
(2.47)∗∗ (1.44) (5.48)∗∗∗

Summer precipitation 148.14 17.94 −5.348
(1.05) (0.28) (0.10)

Summer precipitation squared −0.158 0.087 −0.088
(1.41) (1.06) (1.50)

Fall precipitation −127.11 102.74 −82.93
(0.73) (1.16) (1.08)

Fall precipitation squared 5.631 3.519 1.593
(5.12)∗∗∗ (5.61)∗∗∗ (4.83)∗∗∗

Winter precipitation 13.25 864.14 634.55
(0.06) (5.91)∗∗∗ (5.69)∗∗∗

Winter precipitation squared 6.461 −14.785 −9.171
(2.22)∗∗ (7.09)∗∗∗ (6.42)∗∗∗

Spring precipitation ∗ temperature 26.918 −3.269 −5.706
(3.37)∗∗∗ (0.46) (1.46)

Summer precipitation ∗ temperature 0.117 −2.701 2.160
(0.02) (1.02) (1.01)

Fall precipitation ∗ temperature −50.82 −33.10 −4.996
(3.23)∗∗∗ (4.16)∗∗∗ (1.04)

Winter precipitation ∗ temperature −33.27 82.57 49.45
(1.90)∗ (4.84)∗∗∗ (5.32)∗∗∗

Share of land areas with clay soil −1,934 −1,591 289
(1.29) (1.02) (0.30)

(continued)
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Table A.2
(Continued)

Net crop revenue

Irrigated farms Rainfed farms Irrigated or rainfed farms

Share of land areas with silt soil 4,141 3,746 3,282
(3.58)∗∗∗ (3.61)∗∗∗ (4.61)∗∗∗

Plain (1 = yes; 0 = no) −463 1,095 −187
(0.56) (1.75)∗ (0.38)

Road (1 = yes; 0 = no) 564 4,660 2,702
(0.42) (4.84)∗∗∗ (3.22)∗∗∗

Distance to township government 72.0 −50.7 −35.9
(0.98) (1.26) (0.93)

Share of irrigated areas in village 21.84
(4.56)∗∗∗

If participate production association (1 = yes; 0 = no) 3,138 −2,586 3,547
(2.70)∗∗∗ (1.46) (3.95)∗∗∗

Share of labor without receiving education 32.9 −9.87 2.55
(2.21)∗∗ (0.92) (0.27)

Cultivated land area per household −2,720 −1,189 −1,626
(5.78)∗∗∗ (5.95)∗∗∗ (8.02)∗∗∗

Constant −66,240 65,090 67,420
(2.10)∗∗ (4.47)∗∗∗ (5.39)∗∗∗

Observations 2,750 2,119 4,869
Adjusted R2 0.12 0.20 0.15
F-test 14.94 20.25 30.39

Absolute values of t-statistics in parentheses.
∗ Significant at 10%; ∗∗ significant at 5%; ∗∗∗ significant at 1%.
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