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It is challenging to assimilate the evapotranspiration product (EP) retrieved from satellite data into land surface models (LSMs).
In this paper, a perturbed ensemble Kalman filter (PEKF) and à trous wavelet transform (AWT) integrated method are proposed
to implement the evapotranspiration assimilation. In this method, the AWT is used to decompose the EPs into multiple channels
since it is very powerful in fusing high frequency spatial information of multisource data, and then the Kalman filter is performed
in the AWT domain. The proposed method combines the advantages of the PEKF that is capable of accommodating model error
and observation error, and the AWT can effectively perform multiresolution fusion. Assimilation experiment conducted with the
Noah model and the EP retrieved from the MODIS data shows that the proposed method performs better than the traditional
ensemble Kalman filter (EnKF) and PEKF methods. The analysis results fit well with the evapotranspiration observation at two
field sites with different land surface conditions. These indicate that the proposed method is promising for assimilating regional
scale satellite retrieved EP into LSMs.

1. Introduction

Evapotranspiration (ET) is an important component of the
water and energy exchanges between the atmosphere and
land surface. It is crucial to accurately estimate ET for
studying global or regional water and energy balances.Hence,
good quality of spatial and temporal ET production (EP) can
help to improve comprehension of water and energy cycle.
However, this kind of EP is generally difficult to obtain in both
dimensions of space and time because ET is influenced by
many factors, such as air and skin temperatures, soilmoisture,
vegetation fraction, and horizontal advection. Up to now,
there are two approaches to estimate the ET. One is site
observations or remote sensing retrievals. Site observations
have high spatial resolutions, but can only provide the EP
for limited spatial locations [1]. Remote sensing retrievals
have high spatial resolutions and can cover large range, but
can only retrieve the instantaneous EP. The other is land

surface models (LSMs). LSMs are probably the most efficient
approach for continuously estimating ET on a large range [1].
Because of the imperfection of the physics of LSMs and the
uncertainties of input and driving data, the EP of the LSMs
may contain significant errors. Hence, data assimilation (DA)
has been applied to integrate observational ET into LSMs [2].

DA provides a framework for improving the LSMs
by updating the state variables of the LSMs (SVLs) with
observations and can combine the high spatial resolution
of the observation with the high temporal resolution of the
LSM. DA can be realized by two kinds of schemes: continu-
ous assimilation and sequential assimilation. In continuous
assimilation, the SVLs are modulated to be close to the
observations. Continuous assimilation methods may cause
the abrupt change of the SVLs before and after the DA,
which will make the subsequent simulation of the LSMs
to easily produce obvious errors. In sequential assimilation,
the SVLs are updated according to some forecast principle.
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The update is usually completed by adding the product of
the gain that is estimated frommodel errors and observation
errors and the difference between the observations and the
outputs of the LSM to the SVLs. Sequential assimilation
methods can produce a statistically optimal and dynamically
consistent state estimate of the land surface by considering
observation errors and model errors. Among sequential
assimilation methods, Kalman filter- (KF-) derived methods
yield accurate and consecutive ET estimate and have been
applied widely in recent years [3].

Up to now, many KF-derived DA methods have been
proposed. The KF method explicitly computes the error
covariances through an additional matrix equation that
propagates error information from one update time to the
next, subject to possibly uncertain model dynamics [4, 5].
When the LSMs are linear, the KF method not only can
get the optimal estimate of the SVLs, but also can estimate
the error of the optimal estimate. However, the LSMs are
usually highly nonlinear, and in order to apply the KF to the
nonlinear LSMs, the KF method is extended to extended KF
(EKF) method by using the first derivative of Taylor formula
to linearize the LSMs. For the complicated, discontinuous,
and nonlinear LSMs, the performance of these methods
derived from the EKF is not very steady [6]. In order to
overcome the limits of the KF- and EKF-based methods,
Evensen [7, 8] proposed ensemble KF (EnKF) according to
random dynamic forecast theory proposed by Epstein [9].
Burgers et al. [10] improved the EnKF to perturbed EnKF
(PEKF) by randomly perturbing the SVLs, the observations,
and the forcings using respective uncertainties. Because the
DAmethods derived from the EnKF andPEKF avoid the high
dimensional nonlinearmatrix operation, it is easy to integrate
the DAmethods into the LSMs. Hence, this branch of the DA
methods has become an active research front in recent years.

Qin et al. [11] developed a variational data assimilation
scheme based on the weak constraint concept. Actually,
it assimilated surface skin temperature into a simple land
surface model for estimation of ET. It is inconvenient to use
the automatic differentiation technique which derived the
adjoint codes to evaluate the gradient of the cost function
when one had the ET retrievals. Pipunic et al. [12] confirmed
that assimilating remotely sensed latent and sensible heat flux
could potentially produce better heat flux predictions than
assimilating soil moisture, or skin temperature observations
from which they are derived. However, this experiment is
only tested using synthetic data, and it needs further study
about how the assimilation of ET using the actual remotely
sensed ET is completed. Jang et al. [13] used MODIS data to
calculate ET during clear sky conditions, while the MODIS-
MM5 four-dimensional data assimilation system provided
input variables for the calculation of ET under cloudy sky
conditions, which means that the two types of ET are not
merged in fact from the meaning of DA. Xu et al. [14]
estimated turbulent fluxes through assimilation of geosta-
tionary operational environmental satellites data using the
EnKF method. Though the use of geostationary operational
environmental satellites data tackles the problem of remotely
sensing data sparseness, the potential application of the
experiment is constrained by its execution at site scale rather

than domain scale. French et al. [15] forecasted spatially
distributed cotton ET by assimilating remotely sensed and
ground-based observations. However, this method could not
be feasible to provide continuous ET estimates that are better
than can be achieved with either data alone if temporally
continuous point observations are not available. However,
more research is required to determine if and how well
assimilation of ET can improve heat flux, soil moisture, and
soil temperature predictions from the LSMs.

The main purpose of the DA is to combine the com-
plementary information from measurements and models
of the LSMs into an optimal estimate of the geophysical
fields of interest [4]. The idea is similar to data fusion. By
taking the fusion of low spatial and high spectral resolution
multispectral data (LRMD) and high spatial and low spectral
resolution panchromatic data (HRPD) as an example, the
purpose of data fusion is to inject the details of the HRPD
into the LRMD with the spectral properties of the LRMD
reliably preserved. From the data fusion viewpoint, the KF,
EnKF, and PEKF methods indirectly inject the high spatial
information of the observations into the LSMs, and the
indirect injection loses many details of the observations that
cannot be extracted by the three methods. In data fusion,
many studies have showed that à trous wavelet transform
(AWT) is very powerful in injecting the details of the HRPD
into the LRMD with the minimum influence to the latter.

The AWT was introduced by Holdschneider et al. in
2002 using an à trous (holes) algorithm and can preserve the
translation invariance; that is, a translation of the original
signal necessarily implies a translation of the corresponding
wavelet coefficients [16]. The AWT is a computationally
easy, dyadic, redundant, undecimated, nonorthogonal, and
symmetric decomposition and provides good localization in
both frequency and space domains by decomposing the data
into multiple channels with the same size and decreasing
resolutions [17]. These advantages make the AWT suitable
for fusing multisource data. Therefore, it yields a better
integration of the spatial and spectral quality than other
methods. Recently, many fusion procedures based on the
AWT have been proposed [18, 19].

The aim of using the AWT to ET assimilation is to
improve ET prediction and hence to indirectly correct the
heat flux predictions, meanwhile achieving physically correct
soil moisture and temperature estimates through DA. Hence,
this study tests the application of the AWT to assimilate
remote sensed EP for producing better heat fluxes. Seldom
papers could be found about the use of the AWT in DA
[20–22] which shows promising results. However, more
research is required to unearth the potential of the AWT to
improve heat flux predications along with soil moisture and
temperature predictions from the LSMs.

In Section 2, these advantages of the AWT are introduced
into the DA. A novel assimilation method is proposed for
improving the EP of the LSMs by means of the MODIS data-
retrieved EP (MDRE), based on the joint use of the AWT and
the PEKF. We use the AWT to decompose the MDRE and
the EP of the LSMs into multiple channels and then perform
the traditional PEKF in the AWT domain. The proposed
AWT-PEKF method combines the advantages of the AWT
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and the PEKF and can fully inject the details of the MDRE
into the EP of the LSMs.

Experimental results conducted in Section 3 illustrate
that there is consistency between the improvement analysis
and the quality report of the assimilated EP.The performance
of the AWT-PEKF method is quantified in improving the
LSMs to predict the time varying EP. Intercomparisons
are also made to show the advantage of the AWT-PEKF
method over the conventional approaches based on the EnKF
and PEKF. Estimation results indicate that the AWT-PEKF
method can effectively retrieve the EP with a satisfactory
accuracy. Section 4 concludes the paper.

2. Combined AWT-PEKF Data
Assimilation Method

The PEKF can be understood as a purely statistical Monte
Carlo method, where the ensemble of the SVLs evolves in
state space with considering the mean of the ensemble as
the best estimate and the spreading of the ensemble as the
error variance [9].ThePEKFhas gained popularity because of
its simple conceptual formulation and relative ease of imple-
mentation; for example, it requires no derivation of a tangent
linear or adjoint models and no integrations backward in
time. Further, the computational requirements are affordable
and comparable with other popular assimilationmethods [9].
Hence, in this paper, the PEKF is adopted to assimilate the EP.
The following briefly describes the PEKF.

Given the 𝐼 SVLs of the LSMs at time 𝑛 − 1, denoted
by 𝑋
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where H denotes the observation operator. Then the gain
matrix 𝐺 is obtained as
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In (8), O denotes the observation error matrix.
Finally, the assimilation is performed as

𝑋
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In (9), 𝑌𝑛
𝑜
denotes the observation at time n.

The PEKF method uses the ensemble to describe the
covariance matrix of the SVLs and avoids the explicit cal-
culation of covariance matrix needed in the EKF. A modest
misspecification of the initial ensemble normally does not
influence the results very much over time. The PEKF allows
for a wide range of noise models and one is not restricted to
using Gaussian distributed noise.

It can be found from (9) that the assimilation is completed
based on single grid and does not consider the interrelation
between grids. The interrelation between grids is mainly
reflected by the detail and textural information. The reason
that the spatial resolution of the observation is higher than the
simulation of the LSM is that the observation has more detail
and textural information than the simulation of the LSM.
The assimilation scheme based on single grid cannot fully
inject the detail and textural information of the observation
into the simulation of the LSM.The main purpose of the DA
is to integrate the high accuracy of the observation and the
temporal evolution of the LSMs together.

From the perspective of data fusion, the assimilation
process can be considered as constructing one coefficient
with both the same temporal response as the simulation of
the LSM and the same spatial response as the observation at
a particular grid location.With the development of the AWT,
we expect much room for improvement over the traditional
single-grid-based assimilation scheme to merge the observa-
tion and the simulation of the LSM in the AWT domain since
the wavelet filter can consider the interrelation between the
grids during the detail extraction of the observation.

The AWT can provide good localization in both fre-
quency and space domains in terms of decomposing the data
with finite energy into multiple channels, each one of them
with a different degree of resolution [23]. Because of its shift
invariance property, the AWT has been successfully used
for fusing the data with different resolutions [24]. The AWT
representation of the data can be obtained by using à trous
algorithm [17].

This algorithm consists basically in the application of
consecutive convolutions between the data under analysis
and a scaling function at distinct degradation levels [25]. One
of the most widely used scaling functions for the execution of
the à trous algorithm is the b

3
-spline [23] as follows:

1

256
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If the original data is represented by D, the wavelet
coefficients, 𝐶

𝑗
, for the level 𝑗 are obtained by the difference

between two consecutive degraded data, 𝐷
𝑗+1

and 𝐷
𝑗
, as

shown in the following equation:
𝐶
𝑗
= 𝐷
𝑗
− 𝐷
𝑗+1
. (11)

To carry out the data synthesis from a degradation level
J, an additive criterion should be applied in which all the
coefficients obtained are added to the last degradation level
of the original data, as shown in the following equation:
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𝐽
+
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∑
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. (12)

By manipulating independently the approximation com-
ponents and the wavelet planes of the data, the AWT shows
excellent performance in integrating the spectral information
of the multispectral data and the spatial information of the
panchromatic data. For theDA, the purpose is to integrate the
high spatial resolution information of the observation into
the simulation of the LSMs. Hence, the purposes of the data
fusion and the DA have similarity.

It can be seen from (9) that the update is completed by
adding the product of the gain and the difference to the
SVLs. The high spatial information of the observation used
to improve the SVLs is contained in the difference and is
modulated into the SVLs by the gain. From the perspective of
the AWT-based fusion, the additive DA cannot consider the
difference between the wavelet planes. For different wavelet
planes, the gainmay be different and is variedwith thewavelet
plane. It will be beneficial to complete the DA in the AWT
domain. What is more, the additive DA cannot consider the
interrelation between the grids, which leads to the under
injection of the detail information of the observation. With
the AWT, much room for improvement over the traditional
DA can be expected.

After the forecast of the LSM using the ensemble, see (1).
Apply the AWT to the forecast ensemble and the observation
as
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Then, (2)–(4) and (6) can be, respectively, rewritten as:
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Then the gain matrix 𝐺
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at decomposition level 𝑗 is

obtained as
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In (20), 𝑂𝑛
𝑗
denotes the observation error covariance

matrix at decomposition level 𝑗 at time n.𝑂𝑛
𝑗
can be obtained

using the perturbed observations [10].
Finally, the assimilation is performed as
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Compared with (9), equation (21) has two obvious
advantages. First, in (9), the execution of the assimilation is
completed grid by grid, and the relationship between grids
is not considered; in (21), the interrelation between the local
grids is considered and is quantified by filtering the grids
equivalent to the length of the filter during the decomposition
process. Second, in (9), the same gain is used to extract the
new information absent in the SVLs from the observation; in
(21), the gain is calculated in theAWTdomain and is obtained
according to the wavelet planes. It is more effective to update
the SVLs using wavelet plane varying gains according to the
observation.

For assimilating the MDRE into the EP of the LSM, the
DA procedure based on the AWT-PEKF method comprises
the following steps (Figure 1):

(1) run the LSM in open time loop;
(2) given the Gaussian probability density function,

produce the ensemble of the SVLs according to
their probability characteristic. Run the LSM during
ensemble loop;

(3) integrate the LSM to get the simulation result over the
simulation range, namely, complete range loop;

(4) end ensemble loop. Obtain the mean EP by averaging
the simulated EPs as

EP𝑛
0
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∑

𝑘=1

EP𝑛
𝑘
. (22)

In (22), K denotes the size of the ensemble of the
SVLs. EP𝑛

0
denotes the mean EP at the current

simulation time n;
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Figure 1: The schematic flowchart of the AWT-PEKF method.

(5) perturb theMDRE𝐾 times and produce the ensemble
of the MDRE, denoted by {MDRE𝑛

𝑘
}
𝐾

𝑘=0
[9]. MDRE𝑛

0

denotes the original MDRE;
(6) apply the AWT on the MDRE and EP. Respectively,

obtain the decomposition results as
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In (23) and (24), J is the number of the AWT
decomposition levels;

(7) calculate the gain at decomposition level j, 𝐺
𝑗
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the decomposition results as (25):
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In (25)–(27), the observation operator,H, is 1 because
it does not need transformation between the assimi-
lated variable and the observation;
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(8) innovate the EP of the LSM as

EP𝑛 = EP𝑛
0
+

𝐽

∑

𝑗=0

𝐺
𝑗
(MDRE𝑛

𝑗
− EP𝑛
𝑗
) ; (28)

(9) integrate the LSM until ending open time loop.

3. Experimental Section

In this section, the AWT-PEKF method is tested through
assimilating the EP of the Noah model with the MDRE
retrieved using one operational two-layer method (OTLM)
[26], and the assimilated result is validated with the site
observations from two field stations in Chinese Ecosystem
Research Network (Cern), each of which has a different
underlying land cover condition. The Noah model is devel-
oped by the environmental modeling center of national
center for environmental prediction [27]. In addition, we also
compare the assimilated results with those of the EnKF and
PEKF methods.

3.1. Site Observations. Cern was established in 1988 for
studying the problems related with Chinese ecology. The
network provides continuous observations of ecosystem level
exchanges of biogeochemical, water, energy, and momentum
at diurnal, monthly, seasonal, and annual time scales. Cern
currently comprises forty-six sites, which distribute over the
whole of China. The data of the site observations used in
this study are obtained from the Yucheng and Lawn sites.
At the two sites, ET has been continuously measured by
eddy correlation system which is composed of a 3D sonic
anemometer and an open pathCO

2
/H
2
Oanalyzer since 2001.

The ET data that were obtained by averaging the original
data of 10Hz over 30min are used in the experiment as the
validating data.

The Yucheng site was installed on Huabei plain of China.
The field site is located near the Yucheng county, Shandong
province, China, and the geographical coordinate is approx-
imate 36.96∘N, 116.63∘E, and the altitude is 20m above sea
level. The climate of the area is warm and semi-humid with
annualmean temperature 13.1∘C,mean precipitation 600mm
per year, and the average monthly relative humidity 66.44%.
The soil is mainly classified as sandy-clay loam and sandy
loam. The characteristic of this site is typical of agricultural
plot. The farm has been continuously alternated between
wheat and corn. Lawn site was temporally installed about
54 kilometers from the Yucheng site in 2005. The latitude
and longitude are 36.46∘N and 116.13∘E. The underlying
vegetation of this site is grass. The leaf area index is about
2.0. The average canopy height is about 20–40 cm. The area
is 10 km2. Figure 2 shows the schematic positions of the two
sites, and the research range is mentioned in the following
section.

The two sites represent the main land covers of the
studied area. The underlying surfaces of the two sites are
relatively homogeneous. Therefore, the observation data of
the ET from the two sites can represent the ET statuses of the
two homogeneous areas around the two sites. The two areas

correspond at least to nine grids of the MDRE and the EP of
the Noah model at the spatial resolution of 1 km. Hence, it is
sufficient to use these observations as the validating data.

3.2. The MDRE. In order to retrieve the MDRE, the OTLM
proposed by Zhang et al. [26] is used. In the OTLM, pixel
component arranging and comparing algorithm (PCACA)
and layered energy-separating algorithm (LESA) are two key
procedures. The two procedures are used to partition mixed
surface temperature and mixed surface albedo according to
vegetation fraction to obtain those of bare soil and vegetation.
Then, net radiation of bare soil and vegetation is calculated
using the partitioned results. Finally, the MDRE is retrieved
with a spatial resolution of 1 km.

The OTLM has several advantages. First, the PCACA
is based on vegetation fraction and ground temperature
trapezoid relation theory and initiates a new method of
decomposing mixed pixels. Second, it is very convenient
because only single angle remote sensing data are required
which can be obtained from most of the satellite sensors.
Third, the core of the LESA is Bowen-ratio energy balance
method, which reduces the uncertainties in surface energy
partition based on the Beer law. Fourth, key nonremote
sensing parameters that influence regional ET can also be
obtained by using the OTLM. The OTLM has been success-
fully applied to Huabei area, China, [28]. Hence, the OTLM
is used to retrieve theMDRE. Detailed descriptions about the
OTLM can be found in [26, 28].

3.3. The Temporal Extension of the MDRE. Because the
MODIS is easily influenced by the clouds, the data are not
good enough to retrieve the MDRE every day. Figure 3
shows the available MDREs retrieved from the Aqua data at
14:30 local solar time in May, 2005. The unit for Figure 3,
the following mentioned figures, and the site observation is
W/m2.

On the contrary, the better the assimilated results are,
the more there are the MDREs. Hence, it first requires to
temporally extend theMDREby the availableMDREs and the
EPs of the Noah model. The series of the extended MDRE is
then used as the synthetic observations. In order to extend the
MDRE, an intensitymodulationmethod is employed because
this method is very simple and can be easily implemented
into the Noah model to perform high speed real-time
MDRE extension for a long temporal span. This method
can interpolate the absent MDRE with the fidelity to the
evolvement trend of the Noah EP. This unavailable MDRE

𝑛

at the simulation time 𝑛 is obtained as

MDRE
𝑛
=

𝑆

∑

𝑠=1

(
|𝑠 − 𝑛|

∑
𝑆

𝑡=1
|𝑡 − 𝑛|

EP
𝑛

EP
𝑠

MDRE
𝑠
) . (29)

In (29), s, n, and 𝑡 denote the time. {MDRE
𝑠
}
1≤𝑠≤𝑆

is the
set of the available good MDREs, and 𝑆 is the size of the
set. EP

𝑠
is the Noah EP corresponding to the MDRE

𝑠
, and

EP
𝑛
is the Noah EP at the simulation time n. 𝑠 − 𝑛 describes

the departure of the EP
𝑠
from the EP

𝑛
and characterizes the

temporal difference of the EP
𝑠
from the EP

𝑛
, while 𝑡 − 𝑛

describes the departure of the MDRE
𝑡
from the MDRE

𝑛
, and
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Figure 3: The available MDREs retrieved from the Aqua data at 14:30 local solar time in May, 2005. (a) The MDRE on May 2, 2005; (b) the
MDRE on May 7, 2005; (c) the MDRE on May 14, 2005; (d) the MDRE on May 19, 2005; (e) the MDRE on May 25, 2005; (f) the MDRE on
May 31, 2005.

quantifies the contribution of the MDRE
𝑡
to the MDRE

𝑛
. By

using a ratio between EP
𝑛
and EP

𝑠
, spatial details of MDRE

𝑠

are modulated to the predicted MDRE
𝑛
without altering its

spatial properties and contrast.

3.4. The Noah Model. The Noah model is originated
from a physically based land surface-vegetation-atmosphere-
transfer scheme. During the past ten years, it underwent

substantial upgrades, including modifications to the for-
mulations of canopy conductance, bare soil evaporation,
vegetation phenology, ground heat flux, and so forth. These
model enhancements significantly improve its performance,
and are physicallymore faithful to nature and thusmost likely
the route for more improvements in the future [29, 30].

The Noah model was chosen for assimilation test for
several reasons. It can simulate many states of the land
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Figure 4: The EPs of the Noah model at 15:00 solar time closest to the available MDREs in Figure 3. (a) The EP on May 2, 2005; (b) the EP
on May 7, 2005; (c) the EP on May 14, 2005; (d) the EP on May 19, 2005; (e) the EP on May 25, 2005; (f) the EP on May 31, 2005.

surface, including soil temperature, skin temperature, and the
energy and water fluxes of the land surface energy and water
balances. In various coupled and uncoupled assessments, it
has been proven to have the ability to reproduce the observed
land surface energy, and water budgets effectively [29, 30].
Because of its comprehensive nature, the model yields more
output variables. The model is updated periodically on the
NCEP website (ftp://ftp.emc.ncep.noaa.gov/mmb/gcp/ldas/
noahlsm/, accessed on April 8, 2013) and version 2.7.1 is used
in this experiment (release date: February 9, 2005).

The Noah model contains four vertical soil layers: a thin
10 cm top layer, a second root zone layer of 30 cm, a deep
root zone of 60 cm, and a subroot zone of 100 cm. It can
be run for 13 vegetation covers (2 of which use the same
parameter values) and nine different soil types (two of which
also use the same parameters). It has 33 parameters: 10 related
to vegetation and 23 that describe soil properties. It also has 16
initial states (when run with four root layers).Themodel uses
a local greenness fraction from the normalized difference
vegetation index (NDVI) to establish seasonality in themodel
for each of the 13 vegetation types.

In this assimilation experiment, the Noah model was
configured to have dimensions of 250 × 250 at 1 km × 1 km
spanning a domain bounded by 35.77∘N to 38.26∘N, 114.81∘E
to 117.3∘E. Time step is 10800 seconds. Assimilation time span
is between 1 January, 2005 and 31 May, 2005 after the Noah
model is run from 1 June, 2004 because the MODIS data
in this span are less affected by clouds, and it is beneficial

for retrieving the MDRE. On this grid, the elevation was
derived from the 1 km digital elevation of the GTOPO30
database [31]. The vegetation classification was derived from
the global, 1 km, AdvancedVeryHigh Resolution Radiometer
(AVHRR) based, 13 class vegetation database [32].The 9-class
soil texture data were derived from the top layer of the 1 km,
11-layer soil dataset, state soil geographic database [33]. The
monthly vegetation cover fraction data are taken from the
satellite-based AVHRR 5-year global monthly climatology of
green vegetation fraction [34]. Six EPs of the Noah model at
15:00 solar time corresponding to the nearest time of the six
MDREs are shown in Figure 4.

3.5. Results. The data from the two sites are first used to
evaluate the ET values of the available MDREs and the
Noah model at the corresponding locations before DA. For
validation, we utilize root-mean-square error (RMSE) as the
estimation index. RMSE is defined as

RMSE = √ 1

𝑀

𝑀

∑

𝑚=1

(𝑜 − 𝑑)
2

. (30)

In (30), o and 𝑑, respectively, denote the observation and
validated data. M denotes the number of the data. The unit
for the RMSE is W/m2 in this paper. The estimation results
are, respectively, shown in Table 1.

It can be found from Table 1 that the Noah EP has large
RMSE values than the MDREs compared with the two site
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Figure 5: The assimilated EPs from the EnKF method at 15:00 solar time. (a) The assimilated EP on May 2, 2005; (b) the assimilated EP on
May 7, 2005; (c) the assimilated EP on May 14, 2005; (d) the assimilated EP on May 19, 2005; (e) the assimilated EP on May 25, 2005; (f) the
assimilated EP on May 31, 2005.

observations. The main reason is that the spatial resolution
of the MDRE is higher than that of the Noah EP, and more
details can be found from the MDRE by comparing Figures
3 and 4. The configuration of the Noah model to the spatial
resolution of the MDRE did not produce new information in
the EP because of the coarse resolution of the driving data.
It can be seen from Table 1 that the EP can be improved
significantly with the MDREs through DA.

When performing the AWT-PEKF method, the SVLs
including skin temperature, soil temperature and volumetric
liquid soil moisture for the first soil layer, canopy water
content, and the MDRE are perturbed fifty times according
to their error Gaussian distributions, respectively. The four
SVLs are perturbed because they are the key variables in the
calculation of the ET in the Noah model. For comparisons,
the EnKF, and PEKF methods are also performed. The
assimilated EPs from the EnKF, PEKF, and proposedmethods
are, respectively, shown in Figures 5, 6, and 7.

In order to evaluate the three methods, the two site
observations are employed to validate the DA results by the
RMSE. Table 2 and Figure 8 show the results.

The RMSE reveals the accurate degree of the EPs pro-
duced by each method. The lower the RMSE is, the better
the assimilation effect is, and vice versa. It can be seen
from Table 2 and Figure 8 that all methods improve sig-
nificantly the accuracy of the EPs compared with the EPs
without assimilation: the RMSE values are reduced from 51.58

Table 1:The RMSE results of the MDRE and the Noah EP using the
two site observations.

Yucheng site Lawn site
MDRE EP MDRE EP

RMSE 18.74 51.58 23.47 68.69

Table 2: The RMSE results of the three methods using the two site
observations.

EnKF PEKF AWT-PEKF
Yucheng site 28.75 22.54 16.81
Lawn site 25.18 21.97 18.16

and 68.69 in Table 1 to 28.75, 22.54, and 16.81 and 25.18, 21.97,
and 18.16, respectively, for the Yucheng and Lawn sites. The
three methods allow an obvious accuracy improvement of
the EPs when increasing the spatial details of the EPs. Table 2
and Figure 8 show that the RMSE values of the AWT-PEKF
method are the lowest among the three methods. Therefore,
we can draw a conclusion that the EPs of the AWT-PEKF
method have the least error. The EPs of the PEKF method
have slight error. The EPs of the EnKF method have the
largest error. This is expected because the ET equation used
in the Noah model is a highly nonlinear equation and the
perturbation only for the SVLs used in the EnKF can only
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Figure 6: The assimilated EPs from the PEKF method at 15:00 solar time. (a) The assimilated EP on May 2, 2005; (b) the assimilated EP on
May 7, 2005; (c) the assimilated EP on May 14, 2005; (d) the assimilated EP on May 19, 2005; (e) the assimilated EP on May 25, 2005; (f) the
assimilated EP on May 31, 2005.

propagate analytically with finite precision, which introduces
large errors in the EP estimation and leads to suboptimal
performance.

As seen from Tables 1 and 2, the AWT-PEKF method
produces the best assimilation effect.This is probably because
the AWT-based assimilation scheme does good to improve
the EP simulation of the Noah model. The AWT-PEKF
method gets the advantage of the EnKF and PEKF methods,
because the novel assimilation scheme injects the spatial
details of the MDRE into the Noah EP by taking into
account both the interrelationship between grids, as is the
case of theAWTdecomposition process, and ensemble-based
innovation, as is the case of the PEKF forecast. The two
procedures allow the AWT-PEKFmethod to produce the EPs
closer to the ET observation. One can therefore conclude that
the Noah model can predict the EP relatively accurate using
the AWT-PEKF method.

By combining the quantitative estimation results and the
intercomparison, it can be seen that the AWT-PEKF method
gives the EPs closer to the measured EPs than the EnKF and
PEKF methods when the assimilated EPs are compared with
the observations from the Yucheng and Lawn sites.

3.6. Discussion. Though the AWT-PEKF method outper-
forms the EnKF and PEKF methods in the experiment,
three points are needed to be studied further. The first is

that the validating data are sparse. In validation, there are
only two available field sites. Because it is difficult to get
the ET observation, it needs to confirm whether or not the
assimilated EPs obtained by the AWT-PEKF method are also
close to the ET observation at other locations. The second is
that it needs to test whether or not the AWT-PEKFmethod is
also effective in assimilating other variables. Other variables,
such as skin temperature and soil moisture, are forecasted
differently from the ET and are also influenced by many
factors. Hence, the extension of the AWT-PEKF method to
other variables is a big job. The third is that the assimilation
of the ET cannot influence the consecutive simulation of the
Noah model.

As for the first point, the potential solution is to perform
the AWT-PEKF method in the area where the field sites
are available, meanwhile the MDREs can be retrieved from
cloud-free MODIS data. As for the second point, the AWT-
PEKF method can be easily extended to assimilate skin
temperature and soil moisture products only if the two
products retrieved from the MODIS data are prepared in
advance. As for the third point, in the following study, we
will introduce another novel assimilation method, in which
the SVLs relative with the ET are simultaneously updated in
order to transfer the assimilation effect into the consecutive
simulation of the LSM.Theassimilation ideawill be presented
in another research paper.
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Figure 7: The assimilated EPs from the AWT-PEKF method at 15:00 solar time. (a) The assimilated EP on May 2, 2005; (b) the assimilated
EP on May 7, 2005; (c) the assimilated EP on May 14, 2005; (d) the assimilated EP on May 19, 2005; (e) the assimilated EP on May 25, 2005;
(f) the assimilated EP on May 31, 2005.

0

5

10

15

20

25

30

EnKF PEKF AWT-PEKF

The Yucheng site
The Lawn site

Figure 8:The RMSE histograms of the three methods using the two
site observations.

4. Conclusions

In this paper, we study the hybrid use of the AWT and
PEKF methods for assimilating the MDRE into the EP of the
Noah model in order to improve the consecutive simulation
of the Noah model. The AWT is used to decompose the
MDRE for injecting its detail information represented by
wavelet planes, while the PEKF is used to complete the
assimilation by the model and observation uncertainties.

The AWT-PEKF method retains the respective advantages of
the AWT and PEKF. Firstly, it is based on multigrid, and the
interrelation between grids is considered using the wavelet
filter during the filtering procedure. Secondly, according
to the gain derived using the PEKF from the model and
observation uncertainties, the details and textures of the
MDRE are modulated into the EPs of the Noah model using
the AWT from image fusion viewpoint.

The performance of the proposed method is compared
with those of the EnKF and PEKF methods using one assim-
ilation experiment. Intercomparison results of the RMSE
confirm the effectiveness of the AWT-PEKF method in
improving the spatial accuracy of the EPs. Overall evaluation
shows that theAWT-PEKFmethod is promising and superior
to the traditional EnKF and PEKFmethods. Several issues are
unresolved, such as the validation of the assimilated results,
the effects of ensemble size, initial perturbation fields on
assimilated results, and the actual performance of this new
method in real other variable assimilations. These aspects
require further investigation.
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